
Optimizing Hyperparameters for Bidirectional Neural

Networks using Evolutionary Algorithms

Septian Razi 1

1 Research School of Computer Science, Australian National University

septian.razi@anu.edu.au

Abstract. A novel application of a Bidirectional Neural Network (BDNN) on
Eye Gaze data on Manipulated and Unmanipulated Images was developed. As
BDNN’s possess a highly complex hyperparameter space, we propose the use
of an evolutionary algorithm to search for the optimal hyperparameter space.
We develop an EA to do as such, employing two different fitness functions
Accuracy and Accuracy with Compression Penalty. We found that the optimal
hyperparameters of the two were different in significant ways, especially in

terms of bidirectional training switch occurrence and autoencoder hidden
neurons. Applying these optimal hyperparameters, our model achieves an
accuracy of 73%.

Keywords: Bidirectional Neural Network, Auto-Encoders, Eye Gaze, Image
Manipulation, Hyperparameter Search, Evolutionary Algorithm, Fitness

1 Introduction

1.1 Motivation

We live in a world populated with billions of images. But with the prevalence of

image editing software, manipulation of these images has never been easier and

increasingly common. There is a burgeoning research in forensics and computer

science that is uncovering best practices to determining whether an image has been

manipulated, yet there is a lack of research on how we humans perceive, or fail to

perceive, these fraudulent images [6]. Using eye gaze data from an image
manipulation prediction experiment, combined with a novel technique of bidirectional

neural network, we hope to gain additional insights on the use of this technology in

this problem domain.

1.2 Related Work

Previous work has been conducted on the development of neural networks for

eye gaze data [6][5]. Caldwell et al. achieves an accuracy of 65.7% [6], whereas Tan

et al. achieves an accuracy of 67.82% on their neural network by implementing a

network reduction technique coupled with an evolutionary algorithm [5].

The idea of a bidirectional neural network (BDNN) is simple; allow the network to
be fed and trained traditionally (input to output and error backpropagated) and in its

reverse order (output to input and error ‘forward-propagated’). Training a neural

network in this manner offers benefits from further enforcing inversibility of a

function and reduction in free parameters [3]. It has seen many applications from

image compression [4], inverse functions, and temporal data [7].

There has also been extensive work on the use of evolutionary algorithms for

hyperparameter optimization [8][9][11]. Young employs a bespoke evolutionary

algorithm to optimize deep neural networks [8]. In contrast, Cantu-Paz [9] and

Martinez [11] apply an evolutionary algorithm to shallow neural networks and find

that neural networks generated in this manner can be found in less time and generally

perform better than their manually/grid searched counterparts. In essence,
evolutionary algorithms have been shown to be an effective solution at finding

optimal hyperparameters for neural networks.

Yet, so far there has been limited research on the use of EA’s in combination

with shallow BDNN’s. BDNN’s in this paper are in a unique position in that there are

two neural networks operating – a bidirectional autoencoder and a classifier.

Searching the hyperparameter space for one neural network using conventional

techniques already consumes a significant amount of computational resources [10],

therefore two neural networks would likely require more. Thus, the use of an EA with

BDNN is promising, and this paper seeks to fill this void in research.

1.3 Previous Experiment

In a previous iteration of this paper, the author experimented with the use of

BDNNs trained with the Eye Gaze on Manipulated Images dataset [1] in creating

Class Prototypes for our problem domain. Our neural network trained in this previous

work performed relatively well, achieving an accuracy of around 70%. The class

prototypes it generated brought forth some level of insight to our problem domain

despite its numerical instability. Furthermore, the author had conducted a manual

search of the hyperparameters of our neural network, making it highly likely that

there are more optimal settings that can further improve our BDNN and Class

Prototypes [10].

1.3 Research Question

Noting the aforementioned limitations, this paper seeks to further improve our

previous approach in creating Bidirectional Neural Networks for this dataset. That is,

we seek to answer what the optimal architecture and hyperparameters for a

Bidirectionally trained neural network are.

We use an Evolutionary Algorithm to answer this question. We explore our

complex hyperparameter search space and search for the possible architectures and

hyperparameters needed for an optimal model with higher accuracy. We also explore

the optimal hyperparameters for a BDNN’s whose metric for evaluation differs from
accuracy.

2 Method

2.1 Dataset Description

In this paper we use the dataset obtained from [1] pertaining to an experiment with

eye gaze on manipulated images relevant to the previous work. There are 372

datapoints in the dataset, all of which have numerical features. Table 1 shows a

description of the dataset’s and its corresponding feature descriptions, including our

additional target feature ‘prediction’.

Table 1. Eye Gaze on Image Manipulation Dataset Description

Feature Name Description

participant ID number of the experiment participant

num_fixs Total number of fixations by the

participants spent looking at the image

fixs_duration Total amount of time (in seconds) that the

participant spent looking at the image

num_man_fixs Total number of fixations by the

participant when looking within target area

man_fixs_dur Total amount of time (in seconds) the

participant spent looking within the target

area

image The image the participant was viewing

image_manipulated Whether the image is manipulated (1) or

not (0)

votes Verbal opinion of participants on whether

they deem the image to be unmanipulated

(0), manipulated (1) or unsure (2)

predicted Whether the participant classifies the

image correctly. (0), true positive, (1) true

negative, (2) false positive, (3) false

negative

We have opted for the continued use of this dataset from our previous work with it,

allowing us to measure our improvement from a standardized baseline. This paper is
also exploring the efficacy of BDNN’s and EA’s in this problem domain of shallow

neural networks with limited data, in contrast to deep neural networks and plentiful

data [8].

2.2 Data Pre-processing

We omit column’s that will not be useful for this classification task or might leak

information about the target variable, namely “image”.

We also slightly alter our target variable. We removed all data instances where the

participant answered “unsure” on their vote of the image. This was done as these rows
are naturally outliers in our data and their eye gaze behavior may only mislead other

classifications. Furthermore, we removed ‘vote’ and added a new target feature

named ‘predicted’, which is nominal in nature corresponding to whether the

participant correctly classified the experiment’s techniques.

Normalization is applied to the data. We chose to use a Standard / Z-score
normalization method to all our columns, reducing the standard deviation

significantly.

2.3 Autoencoder and Bidirectional Neural Network

We first create an Autoencoder neural network as our BDNN, and train it in both

directions using a Stochastic Gradient Descent optimiser.

To create an Autoencoder Neural Network, we create neural network with the

same number of inputs as outputs. We also ensure that the hidden layers in between

the two are less than that of the input size. This is because, the purpose of using an
Autoencoder for our model to learn a simplified version of our input data that is

sufficient enough to still accurately represent it [4]. Thus, when trained correctly, the

output of the hidden layer is a compressed or encoded representation of our original

input pattern.

Implementing this in modern framework such as Pytorch involves creating two

symmetrical neural networks. One of the models represents the forward training

direction, while the other represents the backward training direction. When

transitioning between a forward training and backward training in the BDNN, we

simply switch the weights of the previously trained model to the other direction’s

model using the state_dict. This approach essentially emulates a Bidirectional Neural

Network. To improve invertibility of the autoencoder, we also remove all biases from
our model.

It is important to note that there are numerous ways of training our BDNN,

depending on when the training direction swap occurs. In our implementation, we

allow three types; cycle-wise, epoch-wise and batch-wise. A cycle-wise training

switches the training direction only after one direction has completed a full training

cycle for the given number of epochs. In epoch-wise, we switch the training direction

every epoch, and for batch-wise we switch after every batch. This distinction is

important, as Gedeon [4] has shown these approaches can affect the performance of

our BDNN.

2.4 Classification Neural Network

After training our BDNN, we then train our classifier neural network that will

classify our target data predicted.

Figure 1 below offers a simplified visualization of our approach. The first two

layers of our BDNNs in our classifier neural network would be taken from the first

two layers of our trained BDNN. From this, we add multiple layers of hidden neurons

from these two layers and converge them into our classification output neurons. We

use a CrossEntropyLoss function for our classifier as it is appropriate for our

multiclass classification neural network. We then train our classifier net using the

Stochastic Gradient Descent optimizer.

Fig. 1. Diagram of how the classifier neural network operates. Once the BDNN is trained in
both directions, we transfer the first layer of weights to our classifier neural network. We then
train the classifier neural network to classify our data correctly, ensuring that the imported
weights are not affected by our optimizer’s backpropagation.

We then evaluate our classifier using our train test split. We split our dataset such

that 80% was used for training, and the other 20% used for testing. We retrieve the

accuracy of our classifier model on this testing set as an evaluation metric.

2.5 Evolutionary Algorithm for Hyperparameter Search

Search Space

We first define the search space for our hyperparameters. This is important as

numerical hyperparameters can have an infinite amount of values, thus making our

search infinitely large [10]. Furthermore, there are countless many other

hyperparameters that are part of a given neural network model that contribute in

varying amounts to the performance of the model. Thus, we have chosen a set of

hyperparameter values to search and we restrain each hyperparameter to a select

amount of values. Table 2 below shows the hyperparameter search space, with 13

different hyperparameters.

Table 2. Hyperparameter Search Space Defined

Feature Name Possible Values Description
Autoencoder Hyperparameters

encoding_size_decrease 1, 2, 3, 4 Difference between input size and hidden

layer size

activation Tanh, sigmoid, relu, leaky relu, tanhshrink, softsign Activation function used in neural network

learning_rate 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001 Learning rate for model’s SGD optimizer

momentum 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 Momentum for model’s SGD optimizer

bidirection_change 'batch', 'epoch', 'cycle' Specification of when training direction

switches in Bidirectional Training

num_epochs 100, 500, 1000, 1500, 2000 Number of epochs to train

batch_size 100, 50, 10, 1 Number of datapoints in each batch

Classifier Hyperparameters

hidden_layers_class 10, 20, (10, 5), (10, 20), (20, 10) Hidden Layer structure of layers following

second layer (from BDNN)

activation Tanh, sigmoid, relu, leaky relu, tanhshrink, softsign Activation function used in all hidden

layers neural network

learning_rate 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001 Learning rate for model’s SGD optimizer

momentum 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 Momentum for model’s SGD optimizer

num_epochs 100, 500, 1000, 1500, 2000 Number of epochs to train

batch_size 100, 50, 10, 1 Number of datapoints in each batch

Given the above search space, there are over 6 × 1010 possible combinations of

hyperparameter values. Clearly, a grid search among this space would be incredibly

inefficient and time consuming.

Chromosomes and DNA

Our next step is to define our DNA and Chromosome for a given agent. We use a
binary encoding for the chromosome to simplify the other EA function

implementations. To encode the possible values for each 13 possible variables, we use

a 52 bit binary array where every 4bits represents a value in the hyperparameter

search space. Because the largest number a 4 bit digit can represent is 15, and not all

of our hyperparameters have 15 different possibilities, we normalize the binary value

to fit within each hyperparameter’s possibilities. Figure 2 below shows an example.

Fig. 2. Diagram of the Chromosome Layout. One chromosome will contain 52 bits. Every 4
bits represents an index of a hyperparameter’s possible value array space. In the figure above,
the first 4 bits represents the hyperparameter of “Autoencoder Hidden layer Size” and

represents the hyperparameter value 2. This pattern continues for all 13 hyperparameters.

Crossover, Selection and Mutation

We employ two crossover functions; a random crossover and a one-point

crossover. The one-point crossover intersection point is at bit 28, meaning that it splits

a chromosome into its autoencoder hyperparameters and it’s classifiers

hyperparameters. These two functions are chosen at random, as multiple random

crossover functions have been shown to improve the performance of the evolutionary

algorithm [9]. We initialized our crossover rate to 0.6.

Our mutation function is a random mutation function, that will flip the bits of a

random gene in a chromosome. We initialize our mutation rate at 0.002.

Our selection function is a random proportional selection. This means, the agents

to be transferred to the next generation will be chosen at random, but agents that have
a better fitness function will be slightly favoured.

Fitness Function

We define two fitness functions that we would like to explore

Accuracy

This fitness function simply returns the accuracy of a given agent’s classification

model on the test data set.

Accuracy with Compression Penalty

This fitness function returns the accuracy of a given agent’s classification model

on the test data set, but a penalty based on the autoencoders hidden layer size. The

equation is as follows:

fitness = accuracy + encoding_size_decrease. (1)

This fitness function aims to increase the emphasis on the autoencoder to achieve

the best possible compression, thus rewarding agents whose autoencoder are able

to compress the input data in a much better way. Without this, a simple accuracy

encoder may just favour the autoencoder to have more neurons in its layer to

minimize compression and therefore allow the classifier model to work with more

data.

2.6 Experiment Design

We employ all the above initializations of our BDNN, classifier and evolutionary

algorithm and compare the optimal parameters between the two fitness functions;

Accuracy and Accuracy with Compression Penalty and find their optimal

hyperparameters. We discuss our findings below.

3 Results and Discussion

We ran our evolutionary algorithm for both fitness functions with a population size

of 10 and 50 generations. We found that it took approximately 3 hours for the

algorithm to finish for both.

For our Accuracy fitness function, we obtained the following optimal
hyperparameters:

Table 3. Resulting Optimal Hyperparameter values for Accuracy Fitness Function

Feature Name Optimal Values Description
Autoencoder Hyperparameters

encoding_size_decrease 2 Difference between input size and hidden layer size

activation tanhshrink Activation function used in neural network

learning_rate 0.1 Learning rate for model’s SGD optimizer

momentum 0.3 Momentum for model’s SGD optimizer

bidirection_change ‘cycle’ Specification of when training direction switches in

Bidirectional Training

num_epochs 1000 Number of epochs to train

batch_size 50 Number of datapoints in each batch

Classifier Hyperparameters

hidden_layers_class (10, 20) Hidden Layer structure of layers following second layer (from

BDNN)

activation relu Activation function used in all hidden layers neural network

learning_rate 0.5 Learning rate for model’s SGD optimizer

momentum 0.7 Momentum for model’s SGD optimizer

num_epochs 100 Number of epochs to train

batch_size 50 Number of datapoints in each batch

This model achieved an accuracy of 73.1% on our testing set, which is an

improvement on previous work [5][6].

One interesting observation we found was that our encoding_size_decrease was

higher than the minimum value of 1. We had anticipated that a simple accuracy

fitness function would inadvertantly cause the autoencoder to preserve as much of the
original input data as they could by specifying a larger hidden layer size to pass on to

the classifier function. In contrast, a value of 2 indicates that the autoencoder training

has contributed to some level of compression of our input pattern that can be more

appropriate to classifier models than simply giving it the entiritiy of the input pattern.

Table 4. Resulting Optimal Hyperparameter values for Accuracy with Compression Penalty
Fitness Function

Feature Name Optimal Values Description
Autoencoder Hyperparameters

encoding_size_decrease 4 Difference between input size and hidden layer size

activation tanh Activation function used in neural network

learning_rate 0.1 Learning rate for model’s SGD optimizer

momentum 0.5 Momentum for model’s SGD optimizer

bidirection_change ‘epoch’ Specification of when training direction switches in Bidirectional

Training

num_epochs 1000 Number of epochs to train

batch_size 50 Number of datapoints in each batch

Classifier Hyperparameters

hidden_layers_class (10, 20) Hidden Layer structure of layers following second layer (from

BDNN)

activation Sigmoid Activation function used in all hidden layers neural network

learning_rate 0.05 Learning rate for model’s SGD optimizer

momentum 0.3 Momentum for model’s SGD optimizer

num_epochs 1500 Number of epochs to train

batch_size 50 Number of datapoints in each batch

This model also achieved a similar accuracy of 73%, despite the encoding size

decrease.

It is clear to see that the optimal hyperparameters for our fitness function that awards

compression levels are different in our results. For a higher compression rate with

only two hidden nodes, the autoencoder employs the ‘epoch‘-wise bidirectional
training. This may indicate that epoch wise training is more conducive to trainig

BDNN’s Autoencoders that have a high compression rate compared to ‘cycle‘-wise as

we observed previously.

4 Conclusion
In conclusion, we employed an Evolutionary Algorithm to explore the optimal

hyperparameters for a Bidirectional Neural Network. Our Implementation of the

BDNN involved training an autoencoder bidirectionally and applying the weights to a

classifier. We explored two different metrics of performance for our BDNN translated

into a fitness function for our EA. That is, Accuracy of the model and Accuracy with

Compression Penalty of the model. We had found that the optimal hyperparameters

for these two fitness functions given by our EA were different. This is in line with

research that posits that hyperparameters for a neural network are domain specific
[11]. One interesting finding is that some level of compression in our autoencoder can

benefit our classifier’s accuracy, going against the notion that the autoencoder would

preserve as much data as possible for the classifier. Furthermore, the bidirectional

training occurrences has an impact on the quality of training an BDNN autoencoder

receives, and correlates to the neurons in the hidden layers.

Application of these optimal hyperparameters on our BDNN’s resulted in an

accuracy over around 73%.

There is significant room for more research in the combination between BDNN

and evolutionary algorithms. This paper proves the efficacy of this combination yet

includes many limitations. The EA algorithm employed in this paper is far from

sophisticated, and thus exploration on altering the EA’s crossover, mutation, fitness
and selection functions on a BDNN hyperparameter optimization is needed. This is

especially true with fitness functions, applying different metrics such as precision, f1

and roc may uncover different optimal hyperparameter settings. Furthermore, our

findings were limited by our predefined hyperparameter search space, and thus there

is possibility to conduct searches on a larger hyperparameter space. Furthermore,

combining them with other techniques such as pruning, dropout and other modern

techniques may uncover different optimal hyperparameters and settings.

References

1. Caldwell, S., Gedeon, T., Jones, R., Copeland, L.: Imperfect Understandings: A Grounded

Theory And Eye Gaze Investigation Of Human Perceptions Of Manipulated And
Unmanipulated Digital Images. In: Proceedings of the World Congress on Electrical
Engineering and Computer Systems and Science (EECSS 2015) (2015).

2. Nejad, A.F., Gedeon, T.D.: Bidirectional neural networks and class prototypes. Proceedings
of ICNN’95 - International Conference on Neural Networks. (1995).

3. Gedeon, T.D.: Stochastic bidirectional training. SMC’98 Conference Proceedings. 1998
IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218).
(1998).

4. Gedeon, T.D., Catalan, J.A., Jin, J.: Image Compression using Shared Weights and
Bidirectional Networks.

5. Tan, Z., Plested, J.: Classification of Humans’ Perception of Manipulated and
Unmanipulated Digital Images Using Feedforward Neural Network with Network
Reduction Technique. ICONIP2019 Proceedings. (2019).

6. Caldwell, S.: Framing digital image credibility: image manipulation problems, perceptions
and solutions, https://openresearch-
repository.anu.edu.au/bitstream/1885/133844/1/Caldwell%20Thesis%202017.pdf, (2016).

7. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Transactions on
Signal Processing. 45, 2673–2681 (1997).

8. Young, S.R., Rose, D.C., Karnowski, T.P., Lim, S.-H., Patton, R.M.: Optimizing deep
learning hyper-parameters through an evolutionary algorithm. Proceedings of the Workshop
on Machine Learning in High-Performance Computing Environments - MLHPC ’15.
(2015).

9. Cantu-Paz, E., Kamath, C.: An Empirical Comparison of Combinations of Evolutionary
Algorithms and Neural Networks for Classification Problems. IEEE Transactions on
Systems, Man and Cybernetics, Part B (Cybernetics). 35, 915–927 (2005).

10.Bergstra, J., Bengio, Y.: Random Search for Hyper-Parameter Optimization. Journal of
Machine Learning Research. (2012).

11.Martinez, G.: Finding Optimal Neural Network Architecture Using Genetic Algorithms.
(2007).

