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Abstract. A novel application of a Bidirectional Neural Network (BDNN) on 
Eye Gaze data on Manipulated and Unmanipulated Images was developed. As 
BDNN’s possess a highly complex hyperparameter space, we propose the use 
of an evolutionary algorithm to search for the optimal hyperparameter space. 
We develop an EA to do as such, employing two different fitness functions 
Accuracy and Accuracy with Compression Penalty. We found that the optimal 
hyperparameters of the two were different in significant ways, especially in 

terms of bidirectional training switch occurrence and autoencoder hidden 
neurons. Applying these optimal hyperparameters, our model achieves an 
accuracy of 73%. 
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1   Introduction 
 

1.1 Motivation 

We live in a world populated with billions of images. But with the prevalence of 

image editing software, manipulation of these images has never been easier and 

increasingly common. There is a burgeoning research in forensics and computer 

science that is uncovering best practices to determining whether an image has been 

manipulated, yet there is a lack of research on how we humans perceive, or fail to 

perceive, these fraudulent images [6]. Using eye gaze data from an image 
manipulation prediction experiment, combined with a novel technique of bidirectional 

neural network, we hope to gain additional insights on the use of this technology in 

this problem domain. 

 

1.2 Related Work 

Previous work has been conducted on the development of neural networks for 

eye gaze data [6][5]. Caldwell et al. achieves an accuracy of 65.7% [6], whereas Tan 

et al. achieves an accuracy of 67.82% on their neural network by implementing a 

network reduction technique coupled with an evolutionary algorithm [5]. 



The idea of a bidirectional neural network (BDNN) is simple; allow the network to 
be fed and trained traditionally (input to output and error backpropagated) and in its 

reverse order (output to input and error ‘forward-propagated’). Training a neural 

network in this manner offers benefits from further enforcing inversibility of a 

function and reduction in free parameters [3]. It has seen many applications from 

image compression [4], inverse functions, and temporal data [7]. 

There has also been extensive work on the use of evolutionary algorithms for 

hyperparameter optimization [8][9][11]. Young employs a bespoke evolutionary 

algorithm to optimize deep neural networks [8]. In contrast, Cantu-Paz [9] and 

Martinez [11] apply an evolutionary algorithm to shallow neural networks and find 

that neural networks generated in this manner can be found in less time and generally 

perform better than their manually/grid searched counterparts. In essence, 
evolutionary algorithms have been shown to be an effective solution at finding 

optimal hyperparameters for neural networks. 

Yet, so far there has been limited research on the use of EA’s in combination 

with shallow BDNN’s. BDNN’s in this paper are in a unique position in that there are 

two neural networks operating – a bidirectional autoencoder and a classifier. 

Searching the hyperparameter space for one neural network using conventional 

techniques already consumes a significant amount of computational resources [10], 

therefore two neural networks would likely require more. Thus, the use of an EA with 

BDNN is promising, and this paper seeks to fill this void in research. 

1.3   Previous Experiment 

In a previous iteration of this paper, the author experimented with the use of 

BDNNs trained with the Eye Gaze on Manipulated Images dataset [1] in creating 

Class Prototypes for our problem domain. Our neural network trained in this previous 

work performed relatively well, achieving an accuracy of around 70%. The class 

prototypes it generated brought forth some level of insight to our problem domain 

despite its numerical instability. Furthermore, the author had conducted a manual 

search of the hyperparameters of our neural network, making it highly likely that 

there are more optimal settings that can further improve our BDNN and Class 

Prototypes [10]. 

 

1.3   Research Question 

Noting the aforementioned limitations, this paper seeks to further improve our 

previous approach in creating Bidirectional Neural Networks for this dataset. That is, 

we seek to answer what the optimal architecture and hyperparameters for a 

Bidirectionally trained neural network are. 

We use an Evolutionary Algorithm to answer this question. We explore our 

complex hyperparameter search space and search for the possible architectures and 

hyperparameters needed for an optimal model with higher accuracy. We also explore 

the optimal hyperparameters for a BDNN’s whose metric for evaluation differs from 
accuracy. 

2   Method 



2.1   Dataset Description 

In this paper we use the dataset obtained from [1] pertaining to an experiment with 

eye gaze on manipulated images relevant to the previous work. There are 372 

datapoints in the dataset, all of which have numerical features. Table 1 shows a 

description of the dataset’s and its corresponding feature descriptions, including our 

additional target feature ‘prediction’. 

Table 1.  Eye Gaze on Image Manipulation Dataset Description  

Feature Name Description 

participant ID number of the experiment participant 

num_fixs Total number of fixations by the 

participants spent looking at the image 

fixs_duration Total amount of time (in seconds) that the 

participant spent looking at the image 

num_man_fixs Total number of fixations by the 

participant when looking within target area 

man_fixs_dur Total amount of time (in seconds) the 

participant spent looking within the target 

area 

image The image the participant was viewing 

image_manipulated Whether the image is manipulated (1) or 

not (0) 

votes Verbal opinion of participants on whether 

they deem the image to be unmanipulated 

(0), manipulated (1) or unsure (2) 

 

predicted Whether the participant classifies the 

image correctly. (0), true positive, (1) true 

negative, (2) false positive, (3) false 

negative 

 

We have opted for the continued use of this dataset from our previous work with it, 

allowing us to measure our improvement from a standardized baseline. This paper is 
also exploring the efficacy of BDNN’s and EA’s in this problem domain of shallow 

neural networks with limited data, in contrast to deep neural networks and plentiful 

data [8]. 

 

2.2   Data Pre-processing 

We omit column’s that will not be useful for this classification task or might leak 

information about the target variable, namely “image”.  

We also slightly alter our target variable. We removed all data instances where the 

participant answered “unsure” on their vote of the image. This was done as these rows 
are naturally outliers in our data and their eye gaze behavior may only mislead other 

classifications. Furthermore, we removed ‘vote’ and added a new target feature 

named ‘predicted’, which is nominal in nature corresponding to whether the 

participant correctly classified the experiment’s techniques. 



Normalization is applied to the data. We chose to use a Standard / Z-score 
normalization method to all our columns, reducing the standard deviation 

significantly. 

 

2.3   Autoencoder and Bidirectional Neural Network 

We first create an Autoencoder neural network as our BDNN, and train it in both 

directions using a Stochastic Gradient Descent optimiser. 

To create an Autoencoder Neural Network, we create neural network with the 

same number of inputs as outputs. We also ensure that the hidden layers in between 

the two are less than that of the input size. This is because, the purpose of using an 
Autoencoder for our model to learn a simplified version of our input data that is 

sufficient enough to still accurately represent it [4]. Thus, when trained correctly, the 

output of the hidden layer is a compressed or encoded representation of our original 

input pattern.  

Implementing this in modern framework such as Pytorch involves creating two 

symmetrical neural networks. One of the models represents the forward training 

direction, while the other represents the backward training direction. When 

transitioning between a forward training and backward training in the BDNN, we 

simply switch the weights of the previously trained model to the other direction’s 

model using the state_dict. This approach essentially emulates a Bidirectional Neural 

Network. To improve invertibility of the autoencoder, we also remove all biases from 
our model. 

It is important to note that there are numerous ways of training our BDNN, 

depending on when the training direction swap occurs. In our implementation, we 

allow three types; cycle-wise, epoch-wise and batch-wise. A cycle-wise training 

switches the training direction only after one direction has completed a full training 

cycle for the given number of epochs. In epoch-wise, we switch the training direction 

every epoch, and for batch-wise we switch after every batch. This distinction is 

important, as Gedeon [4] has shown these approaches can affect the performance of 

our BDNN. 

2.4   Classification Neural Network 

After training our BDNN, we then train our classifier neural network that will 

classify our target data predicted.  

 

Figure 1 below offers a simplified visualization of our approach. The first two 

layers of our BDNNs in our classifier neural network would be taken from the first 

two layers of our trained BDNN. From this, we add multiple layers of hidden neurons 

from these two layers and converge them into our classification output neurons. We 

use a CrossEntropyLoss function for our classifier as it is appropriate for our 

multiclass classification neural network. We then train our classifier net using the 

Stochastic Gradient Descent optimizer. 



 

Fig. 1. Diagram of how the classifier neural network operates. Once the BDNN is trained in 
both directions, we transfer the first layer of weights to our classifier neural network. We then 
train the classifier neural network to classify our data correctly, ensuring that the imported 
weights are not affected by our optimizer’s backpropagation. 

We then evaluate our classifier using our train test split. We split our dataset such 

that 80% was used for training, and the other 20% used for testing. We retrieve the 

accuracy of our classifier model on this testing set as an evaluation metric. 

 

2.5   Evolutionary Algorithm for Hyperparameter Search 

Search Space 

We first define the search space for our hyperparameters. This is important as 

numerical hyperparameters can have an infinite amount of values, thus making our 

search infinitely large [10]. Furthermore, there are countless many other 

hyperparameters that are part of a given neural network model that contribute in 

varying amounts to the performance of the model. Thus, we have chosen a set of 

hyperparameter values to search and we restrain each hyperparameter to a select 

amount of values. Table 2 below shows the hyperparameter search space, with 13 

different hyperparameters. 

 

Table 2.  Hyperparameter Search Space Defined 

Feature Name Possible Values Description 
Autoencoder Hyperparameters 

encoding_size_decrease 1, 2, 3, 4 Difference between input size and hidden 

layer size 

activation Tanh, sigmoid, relu, leaky relu, tanhshrink, softsign Activation function used in neural network 

learning_rate 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001 Learning rate for model’s SGD optimizer 

momentum 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 Momentum for model’s SGD optimizer 



bidirection_change 'batch', 'epoch', 'cycle' Specification of when training direction 

switches in Bidirectional Training 

num_epochs 100, 500, 1000, 1500, 2000 Number of epochs to train 

batch_size 100, 50, 10, 1 Number of datapoints in each batch 

Classifier Hyperparameters 

hidden_layers_class 10, 20, (10, 5), (10, 20), (20, 10) Hidden Layer structure of layers following 

second layer (from BDNN) 

activation Tanh, sigmoid, relu, leaky relu, tanhshrink, softsign Activation function used in all hidden 

layers neural network 

learning_rate 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001 Learning rate for model’s SGD optimizer 

momentum 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 Momentum for model’s SGD optimizer 

num_epochs 100, 500, 1000, 1500, 2000 Number of epochs to train 

batch_size 100, 50, 10, 1 Number of datapoints in each batch 

 

Given the above search space, there are over 6 × 1010 possible combinations of 

hyperparameter values. Clearly, a grid search among this space would be incredibly 

inefficient and time consuming. 

 

Chromosomes and DNA 

Our next step is to define our DNA and Chromosome for a given agent. We use a 
binary encoding for the chromosome to simplify the other EA function 

implementations. To encode the possible values for each 13 possible variables, we use 

a 52 bit binary array where every 4bits represents a value in the hyperparameter 

search space. Because the largest number a 4 bit digit can represent is 15, and not all 

of our hyperparameters have 15 different possibilities, we normalize the binary value 

to fit within each hyperparameter’s possibilities. Figure 2 below shows an example. 

 

Fig. 2. Diagram of the Chromosome Layout. One chromosome will contain 52 bits. Every 4 
bits represents an index of a hyperparameter’s possible value array space. In the figure above, 
the first 4 bits represents the hyperparameter of “Autoencoder Hidden layer Size” and 

represents the hyperparameter value 2. This pattern continues for all 13 hyperparameters. 

 



Crossover, Selection and Mutation 

We employ two crossover functions; a random crossover and a one-point 

crossover. The one-point crossover intersection point is at bit 28, meaning that it splits 

a chromosome into its autoencoder hyperparameters and it’s classifiers 

hyperparameters. These two functions are chosen at random, as multiple random 

crossover functions have been shown to improve the performance of the evolutionary 

algorithm [9]. We initialized our crossover rate to 0.6. 

Our mutation function is a random mutation function, that will flip the bits of a 

random gene in a chromosome. We initialize our mutation rate at 0.002. 

Our selection function is a random proportional selection. This means, the agents 

to be transferred to the next generation will be chosen at random, but agents that have 
a better fitness function will be slightly favoured. 

 

Fitness Function 

We define two fitness functions that we would like to explore 

Accuracy 

This fitness function simply returns the accuracy of a given agent’s classification 

model on the test data set. 

Accuracy with Compression Penalty 

This fitness function returns the accuracy of a given agent’s classification model 

on the test data set, but a penalty based on the autoencoders hidden layer size. The 

equation is as follows: 

fitness = accuracy + encoding_size_decrease. (1) 

This fitness function aims to increase the emphasis on the autoencoder to achieve 

the best possible compression, thus rewarding agents whose autoencoder are able 

to compress the input data in a much better way. Without this, a simple accuracy 

encoder may just favour the autoencoder to have more neurons in its layer to 

minimize compression and therefore allow the classifier model to work with more 

data. 

 

2.6   Experiment Design 

We employ all the above initializations of our BDNN, classifier and evolutionary 

algorithm and compare the optimal parameters between the two fitness functions; 

Accuracy and Accuracy with Compression Penalty and find their optimal 

hyperparameters. We discuss our findings below. 

 

3   Results and Discussion 
 

We ran our evolutionary algorithm for both fitness functions with a population size 

of 10 and 50 generations. We found that it took approximately 3 hours for the 

algorithm to finish for both. 

 



For our Accuracy fitness function, we obtained the following optimal 
hyperparameters: 

Table 3.  Resulting Optimal Hyperparameter values for Accuracy Fitness Function 

Feature Name Optimal Values Description 
Autoencoder Hyperparameters 

encoding_size_decrease 2 Difference between input size and hidden layer size 

activation tanhshrink Activation function used in neural network 

learning_rate 0.1 Learning rate for model’s SGD optimizer 

momentum 0.3 Momentum for model’s SGD optimizer 

bidirection_change ‘cycle’ Specification of when training direction switches in 

Bidirectional Training 

num_epochs 1000 Number of epochs to train 

batch_size 50 Number of datapoints in each batch 

Classifier Hyperparameters 

hidden_layers_class (10, 20) Hidden Layer structure of layers following second layer (from 

BDNN) 

activation relu Activation function used in all hidden layers neural network 

learning_rate 0.5 Learning rate for model’s SGD optimizer 

momentum 0.7 Momentum for model’s SGD optimizer 

num_epochs 100 Number of epochs to train 

batch_size 50 Number of datapoints in each batch 

This model achieved an accuracy of 73.1% on our testing set, which is an 

improvement on previous work [5][6]. 

One interesting observation we found was that our encoding_size_decrease was 

higher than the minimum value of 1. We had anticipated that a simple accuracy 

fitness function would inadvertantly cause the autoencoder to preserve as much of the 
original input data as they could by specifying a larger hidden layer size to pass on to 

the classifier function. In contrast, a value of 2 indicates that the autoencoder training 

has contributed to some level of compression of our input pattern that can be more 

appropriate to classifier models than simply giving it the entiritiy of the input pattern. 

Table 4.  Resulting Optimal Hyperparameter values for Accuracy with Compression Penalty 
Fitness Function 

Feature Name Optimal Values Description 
Autoencoder Hyperparameters 

encoding_size_decrease 4 Difference between input size and hidden layer size 

activation tanh Activation function used in neural network 

learning_rate 0.1 Learning rate for model’s SGD optimizer 

momentum 0.5 Momentum for model’s SGD optimizer 

bidirection_change ‘epoch’ Specification of when training direction switches in Bidirectional 

Training 

num_epochs 1000 Number of epochs to train 

batch_size 50 Number of datapoints in each batch 



Classifier Hyperparameters 

hidden_layers_class (10, 20) Hidden Layer structure of layers following second layer (from 

BDNN) 

activation Sigmoid Activation function used in all hidden layers neural network 

learning_rate 0.05 Learning rate for model’s SGD optimizer 

momentum 0.3 Momentum for model’s SGD optimizer 

num_epochs 1500 Number of epochs to train 

batch_size 50 Number of datapoints in each batch 

 

This model also achieved a similar accuracy of 73%, despite the encoding size 

decrease.  

It is clear to see that the optimal hyperparameters for our fitness function that awards 

compression levels are different in our results. For a higher compression rate with 

only two hidden nodes, the autoencoder employs the ‘epoch‘-wise bidirectional 
training. This may indicate that epoch wise training is more conducive to trainig 

BDNN’s Autoencoders that have a high compression rate compared to ‘cycle‘-wise as 

we observed previously. 

 

4   Conclusion 
In conclusion, we employed an Evolutionary Algorithm to explore the optimal 

hyperparameters for a Bidirectional Neural Network. Our Implementation of the 

BDNN involved training an autoencoder bidirectionally and applying the weights to a 

classifier. We explored two different metrics of performance for our BDNN translated 

into a fitness function for our EA. That is, Accuracy of the model and Accuracy with 

Compression Penalty of the model. We had found that the optimal hyperparameters 

for these two fitness functions given by our EA were different. This is in line with 

research that posits that hyperparameters for a neural network are domain specific 
[11]. One interesting finding is that some level of compression in our autoencoder can 

benefit our classifier’s accuracy, going against the notion that the autoencoder would 

preserve as much data as possible for the classifier. Furthermore, the bidirectional 

training occurrences has an impact on the quality of training an BDNN autoencoder 

receives, and correlates to the neurons in the hidden layers. 

Application of these optimal hyperparameters on our BDNN’s resulted in an 

accuracy over around 73%. 

There is significant room for more research in the combination between BDNN 

and evolutionary algorithms. This paper proves the efficacy of this combination yet 

includes many limitations. The EA algorithm employed in this paper is far from 

sophisticated, and thus exploration on altering the EA’s crossover, mutation, fitness 
and selection functions on a BDNN hyperparameter optimization is needed. This is 

especially true with fitness functions, applying different metrics such as precision, f1 

and roc may uncover different optimal hyperparameter settings. Furthermore, our 

findings were limited by our predefined hyperparameter search space, and thus there 

is possibility to conduct searches on a larger hyperparameter space. Furthermore, 

combining them with other techniques such as pruning, dropout and other modern 

techniques may uncover different optimal hyperparameters and settings. 
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