
1. CLASSIFYING DRY SCLEROPHYLL FOREST:

A GIS CASE STUDY

Jinwen Zhu,

Research School of Computer Science,

Australian National University
u6108702@anu.edu.au

Abstract. We obtained some data through satellite image analysis and ground observation, and now we want to
predict the type of forest-based on the available information. To obtain accuracy and comprehensive expression, a
neural network is used to build a basic model. In this process, we try to prune the unnecessary and less important
hidden neurons by similarity measurement. We calculate the angle between the output vectors to determine whether
this neuron should be pruned. We acquired a prediction accuracy of about 70% on the test set. And the accuracy on

the test set after pruning usually decreases a little but sometimes it increases since overfitting before.

Keywords: GIS, Neural network, Hidden neurons pruning, Distinctiveness measure, Vector Angle Analysis

1 Introduction

Satellite data can be very good at distinguishing some huge terrain differences and establishing a geographic

information system, such as distinguishing mountains and rivers, but it cannot make the distinction of smaller
geomorphology. Through satellite data, we can only know that this is a forest and It is impossible to distinguish what

type of forest it is. So, we need some detailed ground observation data provided by geographers to build this model.

Because the application of this model must involve a lot of data, which may make the neural network require a lot of

calculation and time to run, so we want to prune some neurons to compress the neural network and under the condition

of ensuring acceptable accuracy, we want to improve efficiency as much as possible under conditions.

1.1 The Dataset

I am using geographic data from the Nullica National Forest area on the south coast of New South Wales [1]. The area

is about 20 x 10 km, divided into a grid of 179831 pixels, and the size is 30 x 30 m. The available information comes

from a rectangular grid of 244,494 points and is a vector of 16 values, of which 7 are from satellite images, and 9 values

are from soil models and aerial photography derived terrain models. The last five are forest supra-types. The data

provided by geographers have been encoded in some way. Our model aims to predict a forest is dry sclerophyll or not.

1.2 Data analysis

For a lot of data, as humans, we can understand very well, but when the computer runs them, there will be some

ambiguity, so we use some methods to pre-process these large amounts of data. We first indicated these data in some

proper way [2] to avoid misunderstanding. and then since the distributions of data are different, it will inevitably lead to

different gradient descent of each dimension. It is difficult to reach the lowest point of the cost function using the same
learning rate. After normalization processing, the cost function becomes "rounder", and it is easy to perform gradient

descent. By doing this, we expect the dataset can produce meaningful predictions.

 Aspect: Since aspect value is circular and the raw encoding cannot show this feature. We use 4 units to represent

north, east, south, and west, then all the eight aspects can be encoded. For example, the north can be coded as 1,

0.5, 0, 0.5, and north-east can be represented as 1, 1, 0, 0, and so on. Then the original aspect can be deleted as

well as aspect-sin and aspect-cos values.

 Altitude:  The values of altitude are distributed normally, so we just need to use a linear squashing function to

squash the range from 7 - 71 to 0 - 1.
 Topographic position: This variable is categorical, and the indicator seems to be relative. So, we encode

topographic position in this way: gully as 0.0, lower slope as 0.25, mid-slope as 0.5, upper slope as 0.75, and ridge

as 1.0.

 Slope degree: The degree increases exponentially with the value. We guess that this is not coincident and it may

have an important effect on our precision. So, we try to linear squash it to range 0 – 1 but keep the exponential

relation.

 Geology descriptor: It is hard to encode since we don’t exactly understand the relationship it wants to indicate

between the numbers and the information. So, we just use the frequency divide the number of all pixels to encode

it.

 Rainfall, Temperature, and Landsat bands:   Use a single continuous input. Simple linear squash to range 0 - 1.

2 Main Method

2.1 Network architecture

Since the data is in one dimension, we selected a NN as the basic model.

The standard NN reference model used in this study has a multi-layer perception of 17 neuron input layers, 14 neuron

hidden layers, and 2 neuron output layers. Regarding reference training, 1000 epochs will be performed using the

training data, and the results will be evaluated based on the test data.

I designed a network with one hidden layer and the general expression of the prediction model is:

𝑦(𝑥) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑((𝑓(𝑥,𝑤1),𝑤2)

where 𝑤1 and 𝑤2 represent the weight and bias of the input layer and hidden layer respectively.

Both Reference and Comparison NN utilizes Mean Squared Error (MSE) for loss calculation, Adam algorithm for

optimization with a learn-rate of 0.01. Since we only have about 30 samples in the test set, it is better to use 10-fold

cross-validation.

2.1 10-fold cross-validation

In the process of machine learning modeling, the common practice is to divide the data into a training set and a test set.

The test set is data independent of training, and does not participate in training at all, and is used for evaluation of the

final model. In the training process, there is often a problem of overfitting, that is, the model can match the training data

very well, but cannot well predict the data outside the training set. If the test data is used to adjust the model parameters

at this time, it is equivalent to knowing part of the test data information during training, which will affect the accuracy

of the final evaluation result. The common practice is to divide a part of the training data as validation data to evaluate

the training effect of the model.

The validation data is taken from the training data but does not participate in the training, this allows a relatively

objective assessment of how well the model matches the data outside the training set. It divides the original data into 10

groups. Each subset of data is used as a validation set, and the remaining 9 groups of subset data are used as training

sets, which will get 10 models. The 10 models are evaluated in the validation set, and the final error is averaged to

obtain the cross-validation error.

2.2 Hidden-neuron pruning

In a neural network, each neuron in the lower layer is connected to the upper layer, but this means that we must perform

many floating-point multiplication operations. In a perfect situation, we only need to connect each neuron with several

other neurons, without performing other floating-point multiplication operations. This kind of network is easier to

compress, and we can skip zero during inference, thereby improving latency. Faster and smaller networks are very

important for running them on mobile devices.

In the beginning, choosing the appropriate model structure and the number of hidden neurons often depend on the

designer's experience, and there is no fixed and accurate method for reference. Therefore, people usually design the
neural network to be slightly larger to ensure that there are enough parameters to extract the necessary features, even if

this method has the risk of overfitting.

If we can sort the neurons in the network based on their “contribution”, then we can remove the neurons with a lower

rank to get a smaller and faster network.

2.3 Vector angle analysis

There are many methods to define attributes to select neurons that should be eliminated. The seminal work of pruning

the training network uses the output of neurons in the two-stage pruning process, which is performed by inspection.

Properties such as relevance, contribution, sensitivity, badness, and distinctiveness have been described in detail
elsewhere [3]. Here, we choose the distinctiveness.

Vector angle analysis is one of the methods to judge the distinctiveness of hidden neurons [4]. The same hidden neuron

will extract the same feature in different samples, and different hidden units should extract different features for the

same input sample. Vector angle analysis is to analyze the similarity of the output results of different hidden neurons to

the same input sample. The similar two columns of data indicate that the corresponding two hidden neurons extract

similar features, and their functions are similar, so they can be merged while the opposite two columns of data indicate

that the results of the corresponding two hidden neurons cancel each other out, so they can be deleted at the same time.

The output results of multiple input samples in the hidden layer can form a matrix. The neural network designed in our

model uses Sigmoid as the activation function in the hidden layer. The output value of the activation function is in the

range from 0 to 1. Therefore, if we use the cosine similarity [5]:

the vector angle between two vectors must be between 0 and 90 degrees. To obtain a result between 90 and 180 degrees,

we add an offset of -0.5 to the result of the activation function Sigmoid. Negative values will appear, and the calculated

vector angle will cover the range of 90 to 180 degrees.

After calculating the vector angle, the general processing rule is that two vectors with a vector angle less than 15

degrees, we think their effects are similar, so you can delete one of the hidden units and put the parameters (weight and

bias) are added to another hidden unit; two vectors with a vector angle greater than 165 degrees, we believe that their

effects are mutually exclusive, and their effects cancel each other out during the calculation process, so you can delete

these two directly Hidden neurons.

When a hidden layer is large, and a hidden layer contains many hidden neurons, multiple hidden neurons may appear to
meet the condition that the vector angle is less than 15 degrees. In this case, the two groups with the smallest vector

angle can be preferentially selected for merging. Another rigorous processing method is to try to merge any two hidden

neurons in turn, then compare the results of each cropped model, and select the group of hidden neurons with the best

results to merge. For a plurality of hidden neurons that meet a vector angle greater than 165 degrees, the two groups

with the largest vector angle can be selected for merging.

2.4 Genetic Algorithm

Determining the effectiveness of neurons is an ill-posed problem [6] because we estimate their importance by observing

the activation of neurons rather than defining them quantitatively. In this case, we use the genetic algorithm as a

verification method to select valid neurons in the input.

Genetic Algorithm is a random classification search and optimization method that imitates the evolution mechanism of

biological evolution in nature, resulting in Darwin's evolution theory and Mendel's genetic theory. In essence, it is an
efficient, parallel, hierarchical search method, which can automatically acquire and accumulate knowledge about the

search space during the search process, and at the same time adaptively control the search process to find the best

solution. The implementation process of the genetic algorithm is just like the evolution process in nature. First, look for

a way to "digitize" the potential solution to the problem. [8] Then initialize a population with random numbers, and the

individuals in the population are these digital potential solutions. Next, after an appropriate decoding process, the fitness

function is used to evaluate the fitness of each gene. Use the selection function to select the best choice according to a

certain rule. Do crossover and mutation then the offspring is produced. The genetic algorithm does not guarantee that

you can obtain the optimal solution to the problem, but the biggest advantage of using genetic algorithm is that you do
not have to understand and worry about how to find the optimal solution, but simply "deny" some individuals who do

not perform well.

2.5 Experiment details

We want to know whether the method of distinctiveness analysis is feasible for pruning hidden neurons within this

dataset. In most cases, the accuracy of the model will decrease after pruning, what we want to do is to reduce the

number of hidden neurons while keeping the accuracy drop within an acceptable range. If we prune too many hidden
neurons at a time, the network may be severely damaged and cannot be recovered. We prune one pair of hidden neurons

with the smallest or largest angle each time, then do training again. Repeat these steps until there is not any pair of

hidden neurons that need to be pruned. Besides, we let the threshold angle increase then as our expectations, the number

of hidden neurons will be reduced. We want to find what degree of the threshold angle is most suitable.

In the data compression task, we use the genetic algorithm. The networks have the same input as the pruning task and

the output indicates whether the input data is recognized as dry sclerophyll (output=1) or not (output=0).

Table 1: specification of networks

 Method Inputs Hidden Outputs Loss function Optimizer

Hidden neuron NN

pruning

17 Changing 2 cross-entropy

Adam

Compression GA Changing 14 2 cross-entropy Adam

The default training epochs and learning rates are 1000 and 0.01. In our data set, we have 190 samples, which are split

into training and testing sets, with sizes of 180 and 10 samples respectively. For both cases, we use 10-fold cross-

validation to avoid overfitting and improve the reliability of test results.

For the genetic algorithm, the DNA size is the number of features in input which is 17 in this study. The population size,

crossover rate, mutation rate, and generation size are defined as 100, 0.8, 0.002, 50 respectively. Each chromosome is a

binary list of 17 genes with 1 represent keeping this input feature and 0 as dropping this feature. Then we can translate
each chromosome into a new dataset. We conduct a new neuron network with the number of input neurons equals to the

number of remaining features. And apply 10-fold cross-validation to obtain the test accuracy. The fitness function is a

combination of two parts with a certain proportion. The first part is the test accuracy multiplied by 100 with the new

dataset created by the chromosome while the second part is the number of features we dropped. We use a proportion of

1:0.2, which means that we only allow a 0.2% reduction in test accuracy for each feature removed. The selection

method we used is the roulette wheel selection. The probability of each chromosome being selected is its fitness divided

by the sum of the fitness of the population. The higher the fitness, the higher the probability of being selected. Then for

each selected parent, randomly choose another individual from the population. Perform uniform crossover at a 0.8
crossover rate and random mutate at a 0.002 mutate rate. Comparing the fitness of patent and offspring. If the child gets

higher fitness, replace parent with its child otherwise keep the parent.

3 Results and Discussion

3.1 Benefit of data pre-processing

In the beginning, we try to classify without normalization, we get the results as shown below in the left. Though it does

not influence the accuracy dramatically. If normalization is not performed, the difference in the value of different

features in the feature vector will be large, which will cause the objective function to become "flat". In this way, when

performing gradient descent, the direction of the gradient will deviate from the direction of the minimum value and take
many detours, that is, makes the training harder, this is shown by the loss plot. After normalizing, training time will be

reduced, and it will be more possible to make a good classification model.

Figure 1: The loss plot and results without normalization vs with normalization

Table 2: The Confusion matrix for training and testing without normalization vs with normalization

3.2 Hidden Neuron Pruning Experiment

In the beginning, we simply calculate the vector angle between each pair of hidden neurons and prune all the hidden

neurons at one time. Then, we improve it by doing iteration, that is, prune one pair of hidden neurons at a time then

repeat train – pruning – train – pruning. The table below shows that the influence of different threshold angles measures

the number of reserved neurons and the test results with and without iteration. The number of hidden neurons is

initialized to 14.

Table 3: Distinctiveness analysis on the hidden layer

Threshold

angle

No. of reserved neurons

without iteration

Test accuracy

without iteration

No. of reserved

neurons with iteration

Test accuracy

with iteration
0° 14 63.16 % 14 63.16 %

5° 12 63.16 % 11 56.67 %

10° 12 63.16 % 9 66.67 %

15° 12 63.16 % 7 70.00 %

20°

30°

10

8

60.92 %

63.33 %

6

4

66.67 %

43.33 %

It is obvious that if we prune the hidden neurons without iteration, the network is damaged and cannot resolve. This is
because, after a learning process, the continued learning of new knowledge by the neural network will cause damage to

the existing knowledge. But the network can resolve and accept new knowledge and become a better model.

Simultaneously pruning all or most of the architecture will affect the overall performance of the entire network

architecture. Because of this, if the features extracted from the input are severely damaged, even a neural network with

enough depth cannot do prediction well. Thus, we decide to use hidden neuron pruning with iteration and with 15°

threshold angle, since it can reduce the number of hidden neurons but not greatly reduce the accuracy.

Then we add the method to our network. In this experiment, the purpose is to observe the changes in testing accuracy
with different numbers of hidden neurons in training and we try to find out which numbers of hidden neurons are the

most appropriate for our dataset. When the current number of hidden neurons decreases with the number of pruned

neurons, the accuracy of the test represents performance expectations.

Table 4: Test accuracy with different number of hidden neurons

Hidden neurons Training accuracy No. of reserved neurons Test accuracy after pruning

14 96.96 % 12 60.53 %

12 96.14 % 10 61.58 %

10 95.15 % 7 62.63 %

8 90.76 % 6 63.68 %

6 89.71 % 4 66.84 %

4 83.51 % 4 66.84 %

2 77.19 2 62.63%

From the observations above, we find out that the training accuracy keeps falling when we reduce the number of hidden

neurons from 14 to 2. Since more hidden neurons can extract more features from the input, and lead to less loss and

higher accuracy when training. The test accuracy increases when we reduce the number of hidden neurons from 14 to 4

 CORRECT FALSE

+VE

FALSE -

VE

training 147 5 8

testing 19 4 7

 CORRECT FALSE

+VE

FALSE -

VE

training 153 4 3

testing 23 3 4

and decrease when we set 2 hidden neurons. And when the number of hidden neurons become 4, it will not prune any

more. The increase at first is because of the overfitting problem. Sometimes, the machine is too entangled with this

error value, it wants to reduce the error to be smaller, to complete its learning mission of this batch of data. Therefore, it

passes almost every data point, so that the error value will be smaller. But it not always good. Because it cannot

successfully predict other data except training data. Hidden neuron pruning makes the network have a certain degree of
sparsity, which can reduce the synergy between different features. And the parameters of neurons in the entire network

are only partially updated, eliminating the weakened joint adaptability between neurons and enhancing the

generalization ability and robustness of the neural network. However, when the number of hidden neurons is set to 2,

the fitting ability of the neural network is insufficient, that is, the neural network can only fit the specific features of a

few samples, so the test accuracy decrease. Thus, for our dataset, 4 hidden neurons are optimal.

3.3 Genetic Algorithm Experiment

With the settings described in the experiment detail, the model reaches a fitness of 73.96 the 5th, 7th, and 10th input

features.

Table 5: The comparison between the original data and compressed data

Method Number of inputs Accuracy on the test set Time cost

NN 17 61.58 % 17s

GA 5 73.68 % 85394s

As we expected, the accuracy will be decreased after doing data compression. But in fact, it improves quite a lot on

accuracy. One of the reasons is the original data has a problem of overfitting. We have 17 features but only 190 samples.

Furthermore, even though we have 17 inputs in our dataset, we encode the feature Aspect into 4 inputs and the number

of independent inputs is much less than that. for example, 4 inputs are coded for Aspect. Also, the 7 inputs (T1-7) from

Landsat are all associated with different wavelengths in the same location, which may not be completely independent
variables. Thus, the number of independent variables is much less than 17. And some features can be indicated by

another one or more features. As the result of the genetic algorithm shows, aspect, altitude, slope degree does not have

much effect on our prediction, these features are all related to the topographic position which we think is important for

our model. Again, T1 – T7 are all dependent, so we just keep one to represent them generally. Once we do the data

comparison, we reduce the noise which affects the training and avoid the overfitting problem, so the test accuracy

increases a lot. It is unexpected but reasonable.

Notably, the training of a genetic algorithm is time-consuming since we should use 10-fold cross-validation each time
we calculate the fitness. For each generation, we need to run 10-fold cross-validation at least population size times. And

since the neuron network used to calculate accuracy is randomly initialized, each time the calculated accuracy and

fitness will change slightly, it is very hard to get a stable result. We can only find a better result rather than the best

result. This is the disadvantage of the genetic algorithm.

4 Conclusion and Future Work

I used satellite imagery data from the New South Wales State Forest and supplemented it with auxiliary data from aerial

photography and other available information. And the data is used to do classifications for dry sclerophyll forest supra-

type using the neuron network. In our work, our prediction model achieves a 70% testing accuracy. We attempt to apply

hidden neuron pruning with iteration and improve the model by about 5% accuracy. It is not much. Besides, the pruning
by thresholding distinctiveness angle only considers the individual performance of each neuron while it would break the

global feature constructed with multiple neurons at the same time. It does not show its advantages clearly in our model.

As our consideration, this method is suitable for some complicated datasets. The performance of the genetic algorithm

method reaches an acceptable test accuracy. But it is very time-consuming, it needs almost one day to run. One of the

reasons is that its processing does not require gradients, which results in a huge time cost for mutation operations.

Furthermore, it cannot guarantee the optimal solution since each time the accuracy is not exactly the same. Due to the

limited size of the data set, the initialization of weights strongly affects network performance. Therefore, we think the

regularization method [8] will be more suitable for our problem.

5 References

1. Milne, L. K., Gedeon, T. D., and Skidmore, A. K. “Classifying Dry Sclerophyll Forest from Augmented Satellite Data: Comparing
Neural Network, Decision Tree & Maximum Likelihood.” In Proceedings Australian Conference on Neural Networks (pp. 160-
163) (1995).

2. Bustos, R. A. and Gedeon, T. D. “Decrypting Neural Network Data: A GIS Case Study.” In Artificial Neural Nets and Genetic
Algorithms (pp. 231-234). Springer, Vienna (1995).

3. Gedeon, Tamas D. "Indicators of hidden neuron functionality: the weight matrix versus neuron behaviour." Proceedings 1995

Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems. IEEE. (1995)
4. Gedeon, T. D., and D. Harris. "Progressive image compression." IJCNN International Joint Conference on Neural Networks. Vol.

4. IEEE. (1992)
5. Neuron Network Pruning- Distinctiveness, https://www.jianshu.com/p/da25ea24988a
6. Shu, L. and Jo, P. “Structure simplification of neural network for smile classification.” Australian Journal of Intelligent

Information Processing Systems (2019)
7. Detailed explanation of genetic algorithm, https://blog.csdn.net/u010451580/article/details/51178225

8. Lee, Honglak, et al. "Efficient sparse coding algorithms." Advances in neural information processing systems. (2007)

