
Abstract.

In recent years, neural network has achieved some remarkable result in

numerous fields as the computational power is continuously raising. However,

the hyper-parameter of the neural network, namely the number of hidden

neurons, learning rate and choices of optimization functions has always been

confounding to tune for different networks. In this paper, I extend the previous

work of bidirectional network and propose using a Hybrid of Random

Immigrants Genetic Algorithm (HIGA) to adjust the hyper-parameters. The

results showed the HIGA does not improve the performance of the neural

network compare to the previous manually tuned network, but it still has its

usefulness for the automation of the tuning task and there are still potential

improvements on the algorithm that have yet to test.

Keywords: Genetic Algorithm, Neural Network, Bi-directional Neural

Network, HIGA, Elitism-based Immigrants, Random Immigrants

1 Introduction

This paper is an extension from the previous work, the same Bidirectional Neural

Network (BDNN) with the SFEW dataset that I have spited the PHOG and LPQ

values of the dataset into ten features as inputs to the BDNN are still used from the

previous work. Although in the previous result, the BDNN is performing better than

the normal Multiplayer Perceptron Network, but the testing accuracy is still

significantly lower than the accuracy claimed by the dataset paper.

My goal is to try and increase the testing accuracy with applying genetic algorithm

(GA). GA can be applied in different aspects of a neural network, such as in the

whole weight matrix of the BDNN, the architecture or the hyper-parameters etcetera.

Calculating weight using GA theoretically will result in a slower convergence than

back-propagation using gradient descent since GA is a stochastic search, applying GA

on the architecture of BDNN is very interesting, but hyper-parameters are selected for

this paper to be tuned by GA to improve upon the previous testing accuracy, because

the structure of a neural network can be designed through architectural analysis based

on mathematical foundations by human, hyper-parameters on the other hand, the

typical methodology for tuning is usually trial and error which is more suitable for

automation.

Due to the nature of neural network, the weights of the BDNN or the weights of any

neural network are continuously changing and updating to find the optimum solution,

thus applying GA in this dynamic environment where change may occur over time

can be challenging. Traditional GAs often focused more on selecting fitter individuals

based on the fitness scores, then recombining them using genetical operations, and

often quickly locate the optimum solution. These traditional approaches often lose

2 错误!文档中没有指定样式的文字。

most of their diversities after certain number of generations and does not track or

adapt to the dynamic problems well. [HIGA Reference] To cope with the dynamic

characteristics of the neural network, HIGA technique proposed by Shenxiang Yang

is used to address this problem by keep certain level of diversity to maintain the

adaptability.

The rest of the paper is going to first outline HIGA and explain the approaches used

in implementing HIGA in Section 2. Section 3 presents the implementation results

and discussions on the results. Section 4 concludes the paper and discusses future

work.

 Note in order to accommodate the genetic algorithm, the whole code of BDNN from

previous work is refactored but the fundamental concept and network structure are

remained the same

2 Method

2.1 HIGA

HIGA is a hybrid algorithm of random immigrants and Elite-based immigrants, the

core idea is to memorise 𝑟𝑒𝑖 × 𝑛 elites from the previous generation G(t-1), where rei

is the ratio of elites and n is the size of the population. After selecting and applying

genetic operators similar to the normal GA, HIGA replaces (𝑟𝑒𝑖 + 𝑟𝑟𝑖) × 𝑛
population with lowest fitness score with: 𝑟𝑒𝑖 × 𝑛 mutated elites from G(t-1) with

separate mutation rate 𝑚𝑒, and 𝑟𝑟𝑖 × 𝑛 randomly generated population, where rri is

the ratio of random immigrants. In this experiment, both rei and rri is set to 0.1, and

𝑚𝑒 is set to 0.001.

2.2 Encoding

For this experiment, there are four hyper-parameters need to be optimised (4 genes):

Learning Rate, No.Hidden Neurons and two Optimisation functions (one for forward

pass and one for backward pass of BDNN). These hyper-parameters are combined

into a single chromosome using binary and representation as the theory of genetic

algorithm is mainly focused on binary representation and barely on non-binary

representations [float reference]. The chromosome is of length 22, where the first 10

digits are the encoding for Learning rate, followed by 10 digits of No.Hidden

Neurons encoding. The last two digits are the optimisation functions encoding, where

𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ∈ {𝐴𝑑𝑎𝑚, 𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝐷𝑒𝑠𝑐𝑒𝑛𝑡} , hence one

digit is used for each optimisation function. The same encoding scheme is applied for

all the four genes, that is using fixed-point integer encoding.

错误!使用“开始”选项卡将 title 应用于要在此处显示的文字。 3

2.3 Genetic operators

Cross over and mutations are both applied as genetic operators for this experiment.

Cross over is applied two times, the first crossover happens at cross rate of 𝑝𝑐 using

uniform crossover where the two crossing chromosomes are split to three sections:

Learning rate, No.Hidden Neurons and Optimisation functions and only the selected

crossing sections under 𝑝𝑏 of uniform crossover is crossing for the second time using

one-point crossing over. Bit flip mutation is applied for the mutation operator, and

mutation happens at mutation rate of 𝑃𝑚 for each bit of the 22 bits chromosomes. 𝑝𝑐

is set to 0.8 and 𝑝𝑚 is set to 0.001 for this experiment.

2.4 Fitness Function and Selection

Fitness of this experiment is determined by the testing accuracy of the BDNN using

the selected hyper-parameters from HIGA, and the selection uses proportional

selection technique. which the fitter individuals will have higher probability to be

selected and survive to the next generation. This approach does keep certain level

diversity of the population as the less fit individuals still have chance to be selected,

but the diversity will start to fade out by the high pressure of selection with

probability theory. However. The proportional selection technique is combined with

HIGA, HIGA keeps generating rri% random population to keep the diversity,

moreover, HIGA also brings rei% previous mutated elites to speed up the

convergence.

3 Result and Discussion

Larger population size and a greater number of generations could possibly yield better

results, but due to the lack of computational power, the experiment is tested on the

population of 20 with 15 generations. On the 15 generation, the most fitted DNA was

translated to 0.115 learning rate, 84 hidden neurons and use Adam as forward

optimiser, SGD as backward optimiser, it reached 33.82% accuracy. I used the same

BDNN to train the same parameters from the most fitted DNA, and the result is

recorded in Table 1. The average accuracy of the 5 trials is 23.05% which is 0.03%

less than the average accuracy from the previous work with hyper-parameters

manually tuned.

4 错误!文档中没有指定样式的文字。

 Table 1.

Trial No. Accuracy

1 21.26

2 22.56

3 25.36

4 20.87

5 25.20

The result does not improve the average accuracy from the previous work, however,

the testing accuracies throughout the generations have no sharp changes, the testing

accuracy at the beginning of generation 0, that is randomly generated parameters also

has very similar average testing accuracy compare to generation 15. This can indicate

the search space for hyper-parameters of the BDNN is very limited, the hyper

parameters of a neural network determines how fast the neural network converges,

there is a max and a min threshold for the network to be overfit or underfit, and the

search space is to find the optimum value in between the two thresholds. Moreover,

the effects of the hyper-parameters are limited, the optimum and sub optimum may

not differ by a large scale.

Although HIGA does not improve the average performance in accuracy, but HIGA

does help in exploring the optimum values under the dynamic environment of the

neural network, it extended the range that the maximum accuracy of the neural

network can achieve, and automated the process of manual tuning the hyper

parameters. Calculating the hyper-parameters of neural network will require relatively

large computational power in relation to the size of the network and the dataset, and

can be very time consuming, which may not be very realistic to tune using the genetic

algorithm, but using GA for few generations can provide a good starting point to tune.

Fig. 1 Testing Accuracy of each Generation.

4 Conclusion and Future work

With HIGA approach, the result in the end does not find much improvements on the

average accuracy but it does discover a higher upper bound a neural network can

0

10

20

30

40

NO. GENERATION

Testing Accuracy

错误!使用“开始”选项卡将 title 应用于要在此处显示的文字。 5

achieve. While the improvements on the neural network but adjusting the hyper-

parameters are limited, the automation for the tuning process provides beneficial

value. In the future, the encoding of the chromosomes can be switched to gray coding

to reduce the hamming distance that slows down the convergence [1], compare the

effects and performance of different genetic algorithm on hyper-parameters tuning of

BDNN, and compare the difference on applying HIGA on the hyper-parameters of

MLP and BDNN to see whether HIGA will perform better in tuning the hyper-

parameters for MLP.

5 Reference

Budin, L., Golub, M., & Budin,A 2010. Traditional techniques of genetic algorithms applied to

floating -point chromosome representations [1]

Montana D.J., & Davis, L. 1989. Training Feedforward Neural Networks Using Genetic

Algorithm [2]

Yang, S., 2007. Genetic Algorithm With Elitism-Based Immigrants For Changing Optimization

Problems. [3]

