
Abstract.  

In recent years, neural network has achieved some remarkable result in 

numerous fields as the computational power is continuously raising. However, 

the hyper-parameter of the neural network, namely the number of hidden 

neurons, learning rate and choices of optimization functions has always been 

confounding to tune for different networks. In this paper, I extend the previous 

work of bidirectional network and propose using a Hybrid of Random 

Immigrants Genetic Algorithm (HIGA) to adjust the hyper-parameters. The 

results showed the HIGA does not improve the performance of the neural 

network compare to the previous manually tuned network, but it still has its 

usefulness for the automation of the tuning task and there are still potential 

improvements on the algorithm that have yet to test. 
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1 Introduction 

This paper is an extension from the previous work, the same Bidirectional Neural 

Network (BDNN) with the SFEW dataset that I have spited the PHOG and LPQ  

values of the dataset into ten features as inputs to the BDNN are still used from the 

previous work. Although in the previous result, the BDNN is performing better than 

the normal Multiplayer Perceptron Network, but the testing accuracy is still 

significantly lower than the accuracy claimed by the dataset paper.  

 

My goal is to try and increase the testing accuracy with applying genetic algorithm 

(GA). GA can be applied in different aspects of a neural network, such as in the 

whole weight matrix of the BDNN, the architecture or the hyper-parameters etcetera. 

Calculating weight using GA theoretically will result in a slower convergence than 

back-propagation using gradient descent since GA is a stochastic search, applying GA 

on the architecture of BDNN is very interesting, but hyper-parameters are selected for 

this paper to be tuned by GA to improve upon the previous testing accuracy,  because 

the structure of a neural network can be designed through architectural analysis based 

on mathematical foundations by human, hyper-parameters on the other hand, the 

typical methodology for tuning is usually trial and error which is more suitable for 

automation.  

 

Due to the nature of neural network, the weights of the BDNN or the weights of any 

neural network are continuously changing and updating  to find the optimum solution, 

thus applying GA in this dynamic environment where change may occur over time 

can be challenging. Traditional GAs often focused more on selecting fitter individuals 

based on the fitness scores, then recombining them using genetical operations, and 

often quickly locate the optimum solution. These traditional approaches often lose 



2 错误!文档中没有指定样式的文字。 

most of their diversities after certain number of generations and does not track or 

adapt to the dynamic problems well. [HIGA Reference] To cope with the dynamic 

characteristics of the neural network, HIGA technique proposed by Shenxiang Yang 

is used to address this problem by keep certain level of diversity to maintain the 

adaptability.  

 

The rest of the paper is going to first outline HIGA and explain the approaches used 

in implementing HIGA in Section 2. Section 3 presents the implementation results 

and discussions on the results. Section 4 concludes the paper and discusses future 

work. 

 

 Note in order to accommodate the genetic algorithm, the whole code of BDNN from 

previous work is refactored but the fundamental concept and network structure are 

remained the same 

2 Method  

2.1 HIGA 

HIGA is a hybrid algorithm of random immigrants and Elite-based immigrants, the 

core idea is to memorise 𝑟𝑒𝑖 × 𝑛 elites from the previous generation G(t-1), where rei 

is the ratio of elites and n  is the size of the population. After selecting and applying 

genetic operators similar to the normal GA, HIGA replaces  (𝑟𝑒𝑖 + 𝑟𝑟𝑖 ) × 𝑛  
population with lowest fitness score with: 𝑟𝑒𝑖 × 𝑛 mutated elites from G(t-1) with 

separate mutation rate 𝑚𝑒, and 𝑟𝑟𝑖 × 𝑛 randomly generated population, where rri is 

the ratio of random immigrants. In this experiment, both rei and rri is set to 0.1, and  

𝑚𝑒 is set to 0.001. 

2.2 Encoding  

For this experiment, there are four hyper-parameters need to be optimised (4 genes): 

Learning Rate, No.Hidden Neurons and two Optimisation functions (one for forward 

pass and one for backward pass of BDNN). These hyper-parameters are combined 

into a single chromosome using binary and representation as the theory of genetic 

algorithm is mainly focused on binary representation and barely on non-binary 

representations [float reference]. The chromosome is of length 22, where the first 10 

digits are the encoding for Learning rate, followed by 10 digits of No.Hidden 

Neurons encoding. The last two digits are the optimisation functions encoding, where 

𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ∈  {𝐴𝑑𝑎𝑚, 𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝐷𝑒𝑠𝑐𝑒𝑛𝑡} , hence one 

digit is used for each optimisation function. The same encoding scheme is applied for 

all the four genes, that is using fixed-point integer encoding.   
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2.3 Genetic operators 

Cross over and mutations are both applied as genetic operators for this experiment. 

Cross over is applied two times, the first crossover happens at cross rate of 𝑝𝑐 using 

uniform crossover where the two crossing chromosomes are split to three sections: 

Learning rate, No.Hidden Neurons and Optimisation functions and only the selected 

crossing sections under  𝑝𝑏  of uniform crossover is crossing for the second time using 

one-point crossing over. Bit flip mutation is applied for the mutation operator, and 

mutation happens at mutation rate of 𝑃𝑚 for each bit of the 22 bits chromosomes.  𝑝𝑐 

is set to 0.8 and 𝑝𝑚 is set to 0.001 for this experiment. 

2.4 Fitness Function and Selection 

Fitness of this experiment is determined by the testing accuracy of the BDNN using 

the selected hyper-parameters from HIGA, and the selection uses proportional 

selection technique. which the fitter individuals will have higher probability to be 

selected and survive to the next generation. This approach does keep certain level 

diversity of the population as the less fit individuals still have chance to be selected, 

but the diversity will start to fade out by the high pressure of selection with 

probability theory. However. The proportional selection technique is combined with 

HIGA, HIGA keeps generating rri% random population to keep the diversity, 

moreover, HIGA also brings rei% previous mutated elites to speed up the 

convergence.  

3 Result and Discussion 

Larger population size and a greater number of generations could possibly yield better 

results, but due to the lack of computational power, the experiment is tested on the 

population of 20 with 15 generations. On the 15 generation, the most fitted DNA was 

translated to 0.115 learning rate, 84 hidden neurons and use Adam as forward 

optimiser, SGD as backward optimiser, it reached 33.82% accuracy. I used the same 

BDNN to train the same parameters from the most fitted DNA, and the result is 

recorded in Table 1. The average accuracy of the 5 trials is 23.05% which is 0.03% 

less than the average accuracy from the previous work with hyper-parameters 

manually tuned. 
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                                                                                                                                           Table 1.  

Trial No. Accuracy 

1 21.26 

2 22.56 

3 25.36 

4 20.87 

5 25.20 

The result does not improve the average accuracy from the previous work, however, 

the testing accuracies throughout the generations have no sharp changes, the testing 

accuracy at the beginning of generation 0, that is randomly generated parameters also 

has very similar average testing accuracy compare to generation 15. This can indicate 

the search space for hyper-parameters of the BDNN is very limited, the hyper 

parameters of a neural network determines how fast the neural network converges, 

there is a max and  a min threshold for the network to be overfit or underfit, and the 

search space is to find the optimum value in between the two thresholds. Moreover, 

the effects of the hyper-parameters are limited, the optimum and sub optimum may 

not differ by a large scale.  

 

Although HIGA does not improve the average performance in accuracy, but HIGA 

does help in exploring the optimum values under the dynamic environment of the 

neural network, it extended the range that the maximum accuracy of the neural 

network can achieve, and automated the process of manual tuning the hyper 

parameters. Calculating the hyper-parameters of neural network will require relatively 

large computational power in relation to the size of the network and the dataset, and 

can be very time consuming, which may not be very realistic to tune using the genetic 

algorithm, but using GA for few generations can provide a good starting point to tune. 

 

Fig. 1 Testing Accuracy of each Generation.  

4 Conclusion and Future work 

With HIGA approach, the result in the end does not find much improvements on the 

average accuracy but it does discover a higher upper bound a neural network can 

0

10

20

30

40

NO. GENERATION

Testing Accuracy



错误!使用“开始”选项卡将 title 应用于要在此处显示的文字。  5 

achieve. While the improvements on the neural network but adjusting the hyper-

parameters are limited, the automation for the tuning process provides beneficial 

value. In the future, the encoding of the chromosomes can be switched to gray coding 

to reduce the hamming distance that slows down the convergence [1], compare the 

effects and performance of different genetic algorithm on hyper-parameters tuning  of 

BDNN, and compare the difference on applying HIGA on the hyper-parameters of 

MLP and BDNN to see whether HIGA will perform better in tuning the hyper-

parameters for MLP.  
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