
Evaluation and Pruning on Neural Network Models for Stress Recognition

Yuanchen Hua

Research School of Computer Science, Australian National University,
Canberra ACT 2600, Australia

u6642108@aun.edu.au

Abstract. The stress problem of people is getting more and more serious, and there have been many studies on stress
recognition through RGB images or thermal images. This paper attempts to combine the top 5 components of RGB and
the top 5 components of thermal through full connect neural networks and LSTM neural networks to recognize whether
people are under stress. Also, this paper will prune the hidden neurons of the full connect network according to the
"distinctiveness of hidden units". the accuracy of full connect neural networks can reach about 57%-62%, the accuracy
of LSTM neural networks can reach 98% which is higher than [1]. Pruning the trained network by "distinctiveness of
hidden units" and merge or offsetting the weights can keep the original accuracy and reduce retraining time.

Keywords: Stress Recognition, Pruning, LSTM, Full Connect.

1 Introduction

The problem of stress is becoming more and more obvious in modern society. People who are under
excessive stress for a long time may suffer health damage. In some special occasions such as vehicle
driving or aircraft driving, stress may affect people to make inappropriate judgments or operations,
resulting in serious consequences. Therefore, we need to recognize whether people are under pressure
in a timely manner.
In recent years, there has been more and more research on stress identification. Earlier stress
recognition systems include "self-report" and "measure physiological signals using invasive sensors".
However, these systems have limitations. For example, "self-report" is not effective, and "invasive
sensors" need to be in contact with people, which is inconvenient [2].
Based on the fact that psychological stress will show through some physical appearance changes,
some researchers began to recognize the pressure by observing lips, mouth and eyebrows [3][4]. For
example, Liao et al [5] establish a stress recognition model based on the blinking frequency, average
eyes closure speed and percentage of saccadic eye movement.
Many researchers study how to detect stress by "physiological response", such as "Heartbeat rate"[6],
"respiration rate” [7][8], “muscle fatigue"[9], etc. In recent years, we can get these indicators through
technologies such as" RGB video recorder" or "thermal imaging". "Physiological response" is getting
more and more popular based on the fact that the "physical appearance" is not as reliable as the
"physiological response"[1]. We need to pay attention to the "reliability" here. Reliable indicators
refer to the phenomena that exist among different individuals. "Physical appearance" is considered to
be less reliable, because it contains many individual differences, such as the blinking frequency of
some people is relatively high, or the lips of some people are often kept still. The researchers believe
that the "physiological response" is more based on the subconscious response. But in fact, the
"physiological response" between different individuals also has unreliable factors. For example,
under the same pressure, some people have lower facial congestion, while others have higher facial
congestion which is more bright in thermal image. In the following sections, we will examine this
issue in detail.
Irani et al. use Super-pixels technology to process RGB images and thermal images with SVM
classifiers, and then combined their SVMs’ result to detect whether a person is under stress [1]. This
research is to detect the stress state of people for a continuous period of time. In other words, the
input is RGB video and thermal video, and the output is a segmentation of this video, according to
the stress state of the person in the video.

2 Yuanchen Hua

Our research data is 10 component of video sampling from RGB and thermal video, instead of RGB
or thermal images/video. In other words, our data is the top5 components of the RGB and thermal
which are processed by Super-pixels technology. In addition, these data are not continuous, but in
some discrete samples, the data size is smaller than [1], and there is no clear time sequence between
each piece of data.
Irani et al. combine these SVM results of the two different modalities through a score level fusion [1].
Motivated by the successful application of neural network in different vision algorithms. Some
researchers suggest that neural network may be better than hand-crafted feature engineering from
experts [10]. For this purpose, we try to build a variety of neural network structures.
In neural network, the number of neurons of input layer and output layer are relatively easy to
determine, but the number of neurons in the hidden layer is often difficult to determine. If the number
is too small, the network will be difficult to converge. If the number is too large, the model size will
increase. At the same time, this will also cause overfitting. Therefore, in this paper, we also prune the
neural network following the principle of "distinctiveness of hidden units".
The rest of the paper is organized as follows: Section 2 explains the details of model building, Section
3 discusses the experimental results, and Section 4 concludes the paper.

2 Model Building

This paper process data and construct neural network through PyTorch. PyTorch is an open source
machine learning library based on the Torch library. In the code, we set 𝑡𝑜𝑟𝑐ℎ.𝑚𝑎𝑛𝑢𝑎𝑙_𝑠𝑒𝑒𝑑(20)
to ensure the initial weights of neural network is repeatable.

2.1 Preprocess Data

First, we preprocess the data. The original data has a total of 620 patterns from 31 people, each with
20 records. We randomly divide the 620 items into 80% and 20%. 80% are used for training and 20%
are used for testing. In the code, we set 𝑛𝑝. 𝑟𝑎𝑛𝑑𝑜𝑚. 𝑠𝑒𝑒𝑑	 20 to ensure that training set and test set
are constant and the 80/20 split is repeated. Each piece of data contains 12 columns of information.
One column is ID_Subject, which represents different subjects, that is, 31 people who participated in
the test to watch the film which is stress stimulator and were recorded by the video. We move this
column to the end to facilitate the writing of the code. There is a column called Labels, which means
whether people feel pressure, we use 0 for calm, and 1 for stressful. Columns 3 to 7 are the top 5 RGB
components, and columns 8 to 12 are the top 5 thermal components. Due to the large difference in
values between different components, we normalize the components of the same type to make them
all between -1 and 1. Part of the data after preprocessing is shown in Table 1.

Table 1. Header of preprocessing data.

Labels RGB_Five_Fist_T
op_Components_1

... Thermal_Five_Fist_
Top_Components_5

ID_Subject

1 -0.347366 ... -0.627937 1
1 -0.370564 ... -0.729077 1
1 -0.588750 ... -0.714827 1
0 -1.513246 ... -0.628445 1
0 -1.080018 ... -0.659319 1
...

2.2 Loss Function and Model Evaluation

Because [1] takes the accuracy to evaluate the model, we also use the same method in order to
compare the results. It is a classification problem, so we use the cross-entropy loss as loss function.
PyTorch 's cross-entropy loss function, which contains Softmax activation function [11], can get the

Evaluation and Pruning on Neural Network Models for Stress Recognition 3

probability distribution that the pattern belongs to and the sum of each category is 1. Pattern is
classified into the category with the highest probability, accuracy = number of correct patterns / total
number of patterns.

2.3 Neural Network A

Irani et al. classify RGB and thermal separately, and then combine their results [1]. They adopt the
formula (1) for the fusion of RGB and thermal SVMs:

S789:; =tanh(g.(w<. 𝑆>?@ + wB. 𝑆C + 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)). (1)

where, 𝑆>?@ is the output of RGB SVM modal, 𝑆C is the output of thermal SVM modal, 𝑆789:; is
the final output after fusion, w<and wB are weight coefficients of RGB and thermal inputs of the
fusion, and 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is a threshold for making decision if the frame is stressful or not. Frames with
corresponding value less than threshold are stressful frame and those larger than threshold are non-
stressful [1].
We build a neural network whose structure is similar to the way in [1] handle components. The
structure of Network A is shown in Fig. 1.

Fig. 1. The Structure of Neural Network A. The orange box is the input layer, the green box is the output layer.

Top five RGB components are calculated through a two-layer network to obtain 32 hidden Neurons.
Each layer of the network contains a full connect layer, a LeakyReLU activation function, a
BatchNorm layer, a Sigmoid activation function, and a dropout laye. The BatchNorm layer is used to
prevent gradient dispersion and overfitting [12], and the dropout layer is used to prevent overfitting
[13]. Top five thermal components are calculated through a two-layer network with the same structure
as RGB above, and 32 hidden Neurons2 are obtained. We then combine these two types of hidden
Neurons as 64 features. We calculate through a layer of full connect network to get the output of
feature 2, namely the probability of being recognized as calm, and the probability of being recognized
as stressful.
The LeakyReLU layer parameter is 0.1. The dropout layer parameter is 0.2, which means that the
probability of an element to be zeroed is 0.2. The optimizer is Adagrad[15], the learning rate is 0.01,
the learning rate decay is 0.001, and the training epoch number is 1000.

2.4 Neural Network B

Considering that RGB components and thermal components are calculated separately, the
relationship between the two types of components is weakened, so we input 10 components together
into a layer of network. As a result, we establish the following network B, as shown in Fig. 2.

4 Yuanchen Hua

Fig. 2. The Structure of Neural Network B. The orange box is the input layer, the green box is the output layer.

10 components go through a layer of network to get 256 hidden neurons, then go through a
LeakyReLU activation function, a BatchNorm layer, and a dropout layer. Then they go through a
layer of network, get 64 neurons, and then go through a LeakyReLU activation function, a BatchNorm
layer, and a dropout layer. Then the result is connected to a fully connect layer to get the output with
feature 2, namely the probability of being recognized as calm and the probability of being recognized
as stressful.
The LeakyReLU layer parameter is 0.1. The dropout layer parameter is 0.2, which means that the
probability of an element to be zeroed is 0.2. The optimizer is Adagrad[15], the learning rate is 0.01,
the learning rate decay is 0.001, and the training epoch number is 1000.

2.5 Neural Network C

Since 620 pieces of data come from the sampling of 31 participants’ video, each participant has
his/her own unique physiological response baseline under pressure. Therefore, we try to use LSTM
as the technology to process the initial data, and then classify through the fully connected layer. So
we build neural network C, as shown in Fig. 3.

Fig. 3. The Structure of Neural Network C. The orange box is the input layer, the green box is the output layer.

The input size of the LSTM layer is 10, the hidden size is 80, and the number of layers is 1. Similarly,
we continue to use the BatchNorm layer to prevent gradient dispersion, and the dropout layer to
prevent overfitting. Fully connect layer 1 converts elements from 80 to 20, and fully connect layer 2
converts elements from 20 to 2.
The LeakyReLU layer parameter is 0.1. The dropout layer parameter is 0.2, which means that the
probability of an element to be zeroed is 0.2. The optimizer is Adagrad[15], the learning rate is 0.01,
the learning rate decay is 0.001, and the training epoch number is 1000.

2.6 Prune Full Connect Layer

Unlike input neurons and output neurons, the number of hidden layer neurons is always difficult to
determine, and rules of thumb are often adopted. TD et al. state that the distinctiveness of hidden
units is determined from the unit output activation vector over the pattern presentation set and the
recognition of similarity of pairs of vectors is done by the calculation of the angle between them in
pattern space [14]. We calculate the activation vectors by the following formula (2):

𝐴	 = w @ data.T+b (2)

A represents the matrix composed of activation vectors, w represents the weight matrix of the full
connect layer, a row in the matrix w represents a neuron, b represents the bias of the full connect layer,
and data. T represents the transpose matrix of all data which is the input of the full connect layer.
Then, we take each row in the matrix A as an activation vector and use each two of these vectors as a
pair to calculate the angle between them. Angles less than 15 are considered similar, and angles

Evaluation and Pruning on Neural Network Models for Stress Recognition 5

greater than 165 are considered opposite [14]. In PyTorch, we use 𝑡𝑜𝑟𝑐ℎ. 𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦	() as
the calculation method, so a pair of vectors with cosine_similarity greater than 0.9659, that is, their
angle is less than 15 degrees. Conversely, if the cosine_similarity of a pair of vectors is less than -
0.9659, then their angle is greater than 165 degrees. Matrix A and matrix w have the same number of
rows, that is, the number of neurons. If the two horizontal vectors in matrix A are similar, it means
that the two neurons in matrix w are similar.
For a similar pair of neurons, we can delete one of them, and merge the weight and bias of the deleted
neuron to the non-deleted neuron which is called merge rule. For the opposite pair of neurons, since
they always give the opposite effect on the pattern, we will delete this pair of neurons which is called
delete rule. According to this theory, we pruned the full connect layer in network C and re-assign the
weight matrix to get a new neural network.

3 Results and Discussion

The training result of neural network A and neural network B is shown in Fig. 4. Same as [1], it
combines RGB and thermal, and the accuracy of network A in the training set is about 57%, and [1]
gets 89%. There is still a big gap between the two. The accuracy of neural network B in the training
set is 62%, and there is still a certain gap compared with 89% in [1]. But compared to neural network
A, which processes RGB and thermal separately, the accuracy of neural network B is improved by
about 5 percent.
In addition, the accuracy of Network A in the test set is about 42%. This shows that even if Network
A adopts BatchNorm and dropout technologies, there is still a problem of overfitting. Similarly, the
accuracy of neural network B in the test set are about 42%, so neural network B also have the issue
of overfitting.

Fig. 4. The Accuracy of Neural Network A and Neural Network B. The horizontal axis is epoch and the vertical axis is accuracy

percentage.

The training results of neural network C are shown in Fig. 5.

6 Yuanchen Hua

Fig. 5. The Accuracy of Neural Network C. The horizontal axis is epoch and the vertical axis is accuracy percentage.

The accuracy of neural network C in the training set is about 98%. Compared with neural network B,
neural network C increase by 36%. The difference between neural network C is that the neural
network C uses a LSTM layer to process the input raw data. Network C takes into account individual
participant information. This shows that there are also unreliable factors of "physiological response"
among the individual participants. In other words, under the same stress state, the RGB information
and thermal information expressed by different individuals are also different. Therefore, if our
network can learn the RGB and thermal information of the same individual, it can more accurately
determine the current stress state of this person. Similarly, the accuracy of neural network C in the
test set are about 50%, so neural network C also have the issue of overfitting. Since the accuracy of
A, B, C in the test set are all equivalent, we infer that the overfitting issue is caused by the small size
of the data set.
The training results of neural network C and pruned neural network C are shown in Fig. 6. Matrix A
of first hidden full connect layer of network C is shown in Table 2. Because it is a 20 * 488 matrix,
Table 2. omits part of the data display.

Fig. 6. The Accuracy of Neural Network C and Pruned Neural Network C. The horizontal axis is epoch and the vertical axis is

accuracy percentage.

Table 2. Matrix A.

 ...
-0.0575 -0.0102 -0.0576 ... -0.0458 -0.0456 -0.0464
0.0797 0.0857 0.0958 ... 0.0972 0.0955 0.0915
-0.0530 -0.0621 -0.0556 ... -0.0419 -0.0422 -0.0424
...

Evaluation and Pruning on Neural Network Models for Stress Recognition 7

0.0829 0.0698 0.0673 ... 0.1038 0.1033 0.1024
0.0267 0.0308 0.0310 ... -0.0210 -0.0209 -0.0213
-0.1020 -0.0621 -0.1066 -0.0591 -0.0576 -0.0561

The similarity calculation shows that the angle between the 5th row and the 20th row of matrix A is
less than 15 degrees, so the 5th neuron in matrix w is similar to the 20th neuron, and we merge them.
There are no pair vectors with an angle greater than 165 in matrix A, so there are no neurons with the
opposite effect in matrix w.
The vector of the 5th and 20th rows in matrix A are as follows in Table 3.:

Table 3. The Vector of The 5th and 20th Rows in Matrix A.
[-0.1419, -0.0905, -0.1599, -0.1523, -0.1386, -0.1340, -0.1329, -0.1325,
 -0.1355, -0.1351, -0.1338, -0.1309, -0.1316, -0.1314, -0.1292, -0.1271,
 -0.0701, -0.1178, -0.1195, -0.1163, -0.1154, -0.1108, -0.1052, -0.1020,
 -0.1001, -0.1049, -0.0997, -0.0671, -0.0651, -0.0646, -0.0650, -0.0635,
 -0.0639, -0.0947, -0.0909, -0.0937, -0.0729, -0.1056, -0.1026, -0.0984,
 -0.0991, -0.0991, -0.0973, -0.0976, -0.1005, -0.0971, -0.1001, -0.0981,
 -0.0988, -0.0972, -0.0952, -0.0713, -0.0413, -0.0629, -0.0992, -0.0608,
 -0.0604, -0.0724, -0.0798, -0.0796, -0.0796, -0.0834, -0.0899, -0.0943,
 -0.0974, -0.0957, -0.0932, -0.0931, -0.1651, -0.1645, -0.1404, -0.1337,
 -0.1615, -0.1527, -0.1580, -0.1593, -0.1587, -0.1595, -0.1613, -0.1604,
 -0.1619, -0.1610, -0.1617, -0.1613, -0.0846, -0.0943, -0.1067, -0.1044,
 -0.1115, -0.1125, -0.1125, -0.1132, -0.1134, -0.1138, -0.1123, -0.1115,
 -0.1118, -0.1128, -0.1136, -0.1140, -0.0959, -0.0651, -0.0603, -0.0725,
 -0.0672, -0.0811, -0.0744, -0.0751, -0.0778, -0.0757, -0.0735, -0.0722,
 -0.0714, -0.0734, -0.0715, -0.1478, -0.0893, -0.0915, -0.0890, -0.0878,
 -0.1078, -0.0678, -0.0874, -0.0972, -0.0972, -0.0971, -0.1031, -0.0938,
 -0.0956, -0.0920, -0.0787, -0.0714, -0.0474, -0.0499, -0.0300, -0.0545,
 -0.0519, -0.0525, -0.0549, -0.0554, -0.0571, -0.0564, -0.0548, -0.0559,
 -0.0543, -0.0561, -0.0575, -0.0488, -0.0425, -0.0443, -0.0417, -0.0365,
 -0.0408, -0.0430, -0.0400, -0.0426, -0.0391, -0.0350, -0.0370, -0.0368,
 -0.0358, -0.0379, -0.1149, -0.0587, -0.0583, -0.0836, -0.0826, -0.0802,
 -0.0659, -0.0765, -0.0775, -0.0745, -0.0729, -0.0811, -0.0812, -0.0800,
 -0.0781, -0.1244, -0.1302, -0.1434, -0.1483, -0.1440, -0.1431, -0.1436,
 -0.1414, -0.1452, -0.1433, -0.1457, -0.0783, -0.0280, -0.1058, -0.1073,
 -0.1068, -0.1046, -0.1077, -0.1067, -0.1081, -0.1095, -0.1088, -0.1111,
 -0.1091, -0.1103, -0.1106, -0.1124, -0.0533, -0.0303, -0.0795, -0.0760,
 -0.0713, -0.0740, -0.0696, -0.0677, -0.0662, -0.0636, -0.0633, -0.0636,
 -0.0653, -0.0598, -0.1110, -0.0991, -0.0372, -0.0635, -0.0594, -0.0925,
 -0.0945, -0.0938, -0.0929, -0.0932, -0.0914, -0.0952, -0.0899, -0.0910,
 -0.0898, -0.0906, -0.1181, -0.1209, -0.1221, -0.1215, -0.1213, -0.1210,
 -0.0946, -0.0881, -0.0879, -0.0879, -0.0881, -0.0890, -0.1274, -0.1300,
 -0.1210, -0.1256, -0.0802, -0.1146, -0.1322, -0.1321, -0.1292, -0.1316,
 -0.1325, -0.1304, -0.1328, -0.1310, -0.1326, -0.1299, -0.1235, -0.1301,
 -0.1287, -0.1299, -0.1218, -0.0970, -0.1098, -0.1093, -0.1055, -0.1093,
 -0.1093, -0.1002, -0.1056, -0.1164, -0.1001, -0.0995, -0.0982, -0.1002,
 -0.1003, -0.0855, -0.0583, -0.0788, -0.0698, -0.0680, -0.0702, -0.0683,
 -0.0689, -0.0714, -0.0700, -0.0701, -0.0679, -0.0658, -0.0677, -0.0993,
 -0.0967, -0.0988, -0.0749, -0.0852, -0.0890, -0.0873, -0.0937, -0.0878,
 -0.0875, -0.0886, -0.0853, -0.0867, -0.0832, -0.0869, -0.0864, -0.0867,
 -0.1295, -0.1176, -0.1228, -0.1297, -0.1303, -0.1321, -0.1303, -0.1329,
 -0.1288, -0.1278, -0.1269, -0.1274, -0.1245, -0.1276, -0.1222, -0.1282,
 -0.0700, -0.0893, -0.0378, -0.0721, -0.0725, -0.0719, -0.0699, -0.0727,
 -0.0697, -0.0717, -0.0703, -0.0725, -0.0551, -0.0568, -0.0441, -0.0776,
 -0.0783, -0.0770, -0.0776, -0.0796, -0.0913, -0.0791, -0.0783, -0.0833,
 -0.0839, -0.0829, -0.0901, -0.0801, -0.0520, -0.0841, -0.0799, -0.0815,
 -0.0829, -0.0828, -0.0805, -0.0806, -0.0790, -0.0805, -0.0827, -0.0811,
 -0.0815, -0.0809, -0.0848, -0.0806, -0.1243, -0.1259, -0.0878, -0.1266,
 -0.1466, -0.1468, -0.1506, -0.1523, -0.1502, -0.1484, -0.1476, -0.1491,
 -0.1493, -0.1484, -0.1491, -0.1470, -0.1474, -0.1052, -0.0866, -0.0701,
 -0.0914, -0.0992, -0.1015, -0.0986, -0.0968, -0.0963, -0.0938, -0.0916,
 -0.0969, -0.0942, -0.0956, -0.0923, -0.0937, -0.0920, -0.0914, -0.0882,
 -0.0775, -0.1084, -0.1517, -0.1517, -0.1357, -0.1244, -0.1300, -0.1286,
 -0.1276, -0.1278, -0.1521, -0.1518, -0.1528, -0.1529, -0.1535, -0.1498,
 -0.1500, -0.1510, -0.0893, -0.0805, -0.0661, -0.0688, -0.0530, -0.0442,
 -0.0830, -0.0986, -0.0953, -0.0979, -0.0986, -0.0986, -0.0999, -0.0992,
 -0.0896, -0.0673, -0.1075, -0.1089, -0.1074, -0.1058, -0.1039, -0.1018,
 -0.0551, -0.1003, -0.1028, -0.1031, -0.1028, -0.1035, -0.1052, -0.1023,
 -0.1003, -0.1012, -0.0696, -0.1095, -0.1087, -0.1066, -0.1078, -0.1066,
 -0.1058, -0.1056, -0.1059, -0.1053, -0.1051, -0.1071, -0.1067, -0.1063,
 -0.1058, -0.0643, -0.0379, -0.0560, -0.0080, -0.0420, -0.0243, -0.0460,
 -0.0544, -0.0535, -0.0535, -0.0511, -0.0524, -0.0528, -0.0510, -0.0497]

[-0.1020, -0.0621, -0.1066, -0.1089, -0.0939, -0.0916, -0.0895, -0.0945,
 -0.0913, -0.0940, -0.0929, -0.0894, -0.0892, -0.0929, -0.0889, -0.0878,
 -0.0595, -0.0974, -0.0963, -0.0949, -0.0958, -0.0901, -0.0875, -0.0880,
 -0.0791, -0.0893, -0.0815, -0.0664, -0.0625, -0.0607, -0.0606, -0.0596,
 -0.0593, -0.1004, -0.0964, -0.0941, -0.0740, -0.1005, -0.0999, -0.0987,
 -0.1006, -0.1008, -0.1010, -0.1011, -0.1019, -0.1005, -0.1015, -0.1019,
 -0.1018, -0.0999, -0.0996, -0.0794, -0.0651, -0.0877, -0.0989, -0.0790,
 -0.0786, -0.0818, -0.0857, -0.0864, -0.0870, -0.0888, -0.0908, -0.0925,
 -0.0936, -0.0935, -0.0920, -0.0916, -0.1113, -0.1136, -0.0997, -0.1226,
 -0.1214, -0.1043, -0.1121, -0.1108, -0.1110, -0.1115, -0.1135, -0.1109,
 -0.1142, -0.1132, -0.1132, -0.1132, -0.0544, -0.0716, -0.0758, -0.0742,
 -0.0823, -0.0813, -0.0803, -0.0825, -0.0802, -0.0826, -0.0824, -0.0841,
 -0.0841, -0.0813, -0.0824, -0.0812, -0.1112, -0.0894, -0.0812, -0.0915,
 -0.0919, -0.0951, -0.0945, -0.0934, -0.0964, -0.0946, -0.0930, -0.0913,
 -0.0917, -0.0919, -0.0920, -0.0845, -0.0471, -0.0516, -0.0382, -0.0394,
 -0.0987, -0.0344, -0.0414, -0.0575, -0.0569, -0.0583, -0.0684, -0.0515,
 -0.0509, -0.0494, -0.0348, -0.0362, -0.0674, -0.0843, -0.0516, -0.0737,
 -0.0719, -0.0719, -0.0743, -0.0748, -0.0755, -0.0759, -0.0756, -0.0763,
 -0.0754, -0.0754, -0.0782, -0.0155, -0.0121, -0.0567, -0.0045, -0.0019,
 -0.0033, -0.0019, -0.0007, -0.0023, -0.0032, 0.0018, -0.0009, -0.0021,
 0.0001, -0.0010, -0.0962, -0.0655, -0.0528, -0.0826, -0.0834, -0.0823,
 -0.0753, -0.0809, -0.0819, -0.0810, -0.0805, -0.0832, -0.0839, -0.0841,
 -0.0825, -0.0876, -0.0868, -0.1005, -0.0983, -0.1025, -0.1053, -0.1025,
 -0.1028, -0.1029, -0.1034, -0.1045, -0.0577, -0.0203, -0.0895, -0.0888,
 -0.0900, -0.0871, -0.0894, -0.0903, -0.0888, -0.0910, -0.0929, -0.0927,
 -0.0933, -0.0951, -0.0948, -0.0905, -0.0810, -0.0728, -0.0907, -0.0886,
 -0.0853, -0.0875, -0.0849, -0.0836, -0.0835, -0.0828, -0.0829, -0.0826,
 -0.0836, -0.0813, -0.1118, -0.1024, -0.0397, -0.0703, -0.0638, -0.0943,
 -0.0979, -0.0969, -0.0967, -0.0949, -0.0933, -0.0947, -0.0927, -0.0949,
 -0.0945, -0.0949, -0.0852, -0.0865, -0.0857, -0.0844, -0.0841, -0.0852,
 -0.1193, -0.1148, -0.1144, -0.1143, -0.1145, -0.1155, -0.0910, -0.1094,
 -0.0980, -0.0970, -0.0940, -0.0978, -0.1139, -0.1121, -0.1118, -0.1140,
 -0.1140, -0.1140, -0.1152, -0.1131, -0.1140, -0.1135, -0.1097, -0.1142,
 -0.1146, -0.1152, -0.1059, -0.0803, -0.1015, -0.0978, -0.0944, -0.0971,
 -0.0975, -0.0940, -0.0913, -0.0827, -0.0959, -0.0939, -0.0938, -0.0963,
 -0.0970, -0.0765, -0.0664, -0.0844, -0.0695, -0.0702, -0.0717, -0.0716,
 -0.0691, -0.0717, -0.0706, -0.0705, -0.0696, -0.0667, -0.0678, -0.1009,
 -0.1020, -0.1033, -0.0879, -0.0909, -0.0909, -0.0933, -0.0937, -0.0926,
 -0.0898, -0.0913, -0.0899, -0.0899, -0.0906, -0.0915, -0.0908, -0.0907,
 -0.1000, -0.0891, -0.1213, -0.0948, -0.0970, -0.0857, -0.0897, -0.0899,
 -0.0863, -0.0867, -0.0871, -0.0867, -0.0847, -0.0840, -0.0838, -0.0882,
 -0.0834, -0.0998, -0.0600, -0.0860, -0.0859, -0.0857, -0.0842, -0.0847,
 -0.0834, -0.0845, -0.0841, -0.0858, -0.0720, -0.0727, -0.0726, -0.0756,
 -0.0770, -0.0781, -0.0760, -0.0762, -0.0794, -0.0765, -0.0760, -0.0808,
 -0.0816, -0.0806, -0.0813, -0.0704, -0.0460, -0.0629, -0.0670, -0.0678,
 -0.0677, -0.0684, -0.0700, -0.0697, -0.0650, -0.0682, -0.0673, -0.0696,
 -0.0660, -0.0680, -0.0648, -0.0699, -0.0887, -0.0887, -0.0612, -0.0917,
 -0.1022, -0.1029, -0.1018, -0.1036, -0.1018, -0.1038, -0.1037, -0.1049,
 -0.1067, -0.1038, -0.1049, -0.1010, -0.1000, -0.1166, -0.1081, -0.0871,
 -0.0880, -0.0995, -0.1007, -0.0995, -0.0993, -0.0993, -0.0984, -0.0959,
 -0.1002, -0.0973, -0.0984, -0.0978, -0.0948, -0.0948, -0.0955, -0.0947,
 -0.0551, -0.1033, -0.1152, -0.1114, -0.0980, -0.0933, -0.0615, -0.0606,
 -0.0602, -0.0602, -0.1139, -0.1133, -0.1136, -0.1130, -0.1134, -0.1134,
 -0.1143, -0.1134, -0.0906, -0.0896, -0.0814, -0.0892, -0.0650, -0.0666,
 -0.0879, -0.0894, -0.0868, -0.0878, -0.0894, -0.0883, -0.0888, -0.0887,
 -0.0773, -0.0595, -0.0935, -0.0929, -0.0917, -0.0919, -0.0889, -0.0892,
 -0.0602, -0.0885, -0.0891, -0.0891, -0.0894, -0.0891, -0.0905, -0.0857,
 -0.0841, -0.1102, -0.0933, -0.1114, -0.1110, -0.1088, -0.1091, -0.1109,
 -0.1095, -0.1092, -0.1095, -0.1091, -0.1101, -0.1113, -0.1117, -0.1102,
 -0.1095, -0.0723, -0.0529, -0.0678, -0.0315, -0.0539, -0.0584, -0.0564,
 -0.0631, -0.0627, -0.0625, -0.0599, -0.0596, -0.0591, -0.0576, -0.0561]

The first hidden full connect layer of neural network C has 20 neurons, while the pruned neural
network C only has 19 neurons.
We find that the neural network C train 400 epochs and then converge, and the pruned neural network
C with original weight data converge after about 150 epochs, and the final accuracy was about 98%,
which is same as the original neural network C. Through "distinctiveness of hidden units", we can
indeed prune the neural network and retaining the weights through merge or delete rules can make
the network have high accuracy without retraining. The network that retains the original weight data
after pruning is retrained, and the network can also converge very quickly.

8 Yuanchen Hua

4 Conclusion and Future Work

Using full connect neural networks is worse than [1]. When we use LSTM technology to process the
input data and use the fully connect layer for classification, the accuracy rate has been significantly
improved. At present, the data we use is only the top 5 component of the video data after sampling.
In the future, we can also use CNN technology to directly process video data.
Through LSTM technology, the characteristics of each individual's response to stress are taken into
account, we find that the accuracy of the network's recognition of stress is improved, which shows
that there is a certain degree of unreliability in the "physiological response" of different individuals.
In the future stress identification model, you can consider using a small amount of time to pre-learn
the stress data of the person in order to be more accurate in the subsequent long-term detection. At
present, the research on the stress recognition model is a general research on all human beings. In the
future, we can try to conduct study about rapid stress recognition modeling for individuals based on
a certain general model.
The vector similarity method we currently use for pruning can only prune full connect layer weights,
and cannot be used for networks such as LSTM. This method is limited. In the future, we need to
study pruning methods for other networks.
The issue of overfitting in the neural network model build in this paper still exists. We analyze from
two aspects: on the one hand, the network is too complicated. The RGB and thermal component are
PCA eigenvalues, ranging from -10J to 10J, it is weakly-informative so a complex network is
required. On the other hand, it may result from the limitation of data. Combining these two points, a
more complex network with insufficient data are more likely to produce overfitting.

5 References

1. Irani, R., Nasrollahi, K., Dhall, A., Moeslund, T., Gedeon, T.: Thermal super-pixels for bimodal stress recognition. 2016 Sixth
International Conference on Image Processing Theory, Tools and Applications (IPTA). (2016).

2. Chen, T., Yuen, P., Richardson, M., Liu, G., She, Z.: Detection of Psychological Stress Using a Hyperspectral Imaging Technique.
IEEE Transactions on Affective Computing. 5, 391-405 (2014).

3. Metaxas, D., Venkataraman, S., Vogler, C.: Image-Based Stress Recognition Using a Model-Based Dynamic Face Tracking
System. Computational Science - ICCS 2004. 813-821 (2004).

4. Dinges, D., McGlinchey, E., Venkataraman, S., & Metaxas, D.: Optical computer recognition of behavioral stress in space flight.
Habitation International Journal for Human Support Research. 10(3/4),233 (2006).

5. Pavlidis, I., Levine, J.: Thermal image analysis for polygraph testing. IEEE Engineering in Medicine and Biology Magazine. 21,
56-64 (2002).

6. Balakrishnan, G., Durand, F., Guttag, J.: Detecting Pulse from Head Motions in Video. 2013 IEEE Conference on Computer
Vision and Pattern Recognition. (2013).

7. Fei, J., Pavlidis, I.: Thermistor at a Distance: Unobtrusive Measurement of Breathing. IEEE Transactions on Biomedical
Engineering. 57, 988-998 (2010).

8. Fei, J., Zhu, Z., Pavlidis, I.: Imaging Breathing Rate in the CO 2 Absorption Band. 2005 IEEE Engineering in Medicine and
Biology 27th Annual Conference. (2005).

9. Irani, R., Nasrollahi, K., Moeslund, T.: Contactless measurement of muscles fatigue by tracking facial feature points in a video.
2014 IEEE International Conference on Image Processing (ICIP). (2014).

10. Kennardi, A., Plested, J.: Evaluation on Neural Network Models for Video-Based Stress Recognition. Communications in
Computer and Information Science. 440-447 (2019).

11. PyTorch master documentation, https://pytorch.org/docs/stable/nn.html#crossentropyloss.
12. Ioffe, S., & Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv

preprint arXiv:1502.03167. (2015).
13. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R.: Dropout: a simple way to prevent neural networks

from overfitting. The journal of machine learning research, 15(1), 1929-1958. (2014).
14. Gedeon, T. D., & Harris, D.: Network reduction techniques. In Proceedings International Conference on Neural Networks

Methodologies and Applications, vol. 1, pp. 119-126. (1991).
15. PyTorch master documentation, https://pytorch.org/docs/stable/optim.html?highlight=adagrad#torch.optim.Adagrad.

