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Abstract.  
Facial expression recognition (FER) is an interesting rather complex problem in artificial intelligence. With the great 
development in deep learning, growing numbers of well-functioned algorithms have been proved to have achieved 
excellent performance [1]. Although FER research fields had received a lot of achievements [2], [3], the outcomes of 
FER in real-world practice are still relatively undesirable. This paper focuses on implementing an alternative neural 
network approach intended to improve the accuracy for classifying emotions based on the feature data that have been 
extracted in [4]. Further discussion will include a step-by-step optimization elaboration over the neural network 
models. 

1 Introduction  

Artificial Neural Network (ANN) is one of the most popular models in dealing with FER problems, 
since ANN is capable of pattern recognition and classification of image data [5]. For the past few 
decades, there have been many successful approaches for improving the performance of the ANN 
models, but due to the complexity of ANN itself,  the problem of ANN model optimization is still 
challenging in facial expression recognition. It is obvious that the majority of existing methods for 
multi-class classification consider themselves as a regression issue, where models are trained to fit a 
binary sequence, and each digit indicates the existence of its corresponding class [6]. The class to 
which the highest value corresponds is the class in which the input value resides. However, studies 
have shown the limitation of such criterion since the value of 0.5 as a threshold to distinguish 
between two classes is not sacrosanct either [7]. Hence, further improvement towards the threshold 
control is one of the most effective way for model optimization.  

The thresholding refers to the technique of image thresholding which is one of the most powerful 
techniques for image segmentation because of its simple and stable performance. It can be used to 
distinguish object and background pixels in a digital image [8]. Therefore, setting a threshold and 
adjusting its scope to make the edges of each class to appear clearer is especially useful in multi-
class problem classification.  

In this paper, I will present an experiment of trained neural network model which has different 
criterion combined with a gradual optimization process based on the extracted data from the facial 
expression images that are established from the previous research [4]. Besides, a comparison 
between the performance of the network model I used and the network with thresholds control will 
be discussed in detail as well. In order to get a comparable outcome, I implement the ANN model 
following the relevant pre-request defined in [4] so as to find the optimal performance that can be 
achieved under this condition.  

mailto:U6437091@anu.edu.au


2 Zhewen Li, u6437091 

2 Dataset 

Previous studies have shown that, most FER approaches work well in the well-controlled databases 
but are usually invalid for the real-world expression [9], as human expressions vary a lot from 
natural condition to facing the camera. Therefore, I adopted the SFEW database to do experiments 
upon defined in the previous study, namely Static Expression in the Wild, which is developed by 
selecting frames from the temporal dataset Acted Facial Expressions in the Wild (AFEW), 
consisting of close to real world environment extracted from movies. [4] Therefore, the robustness 
of the trained model to unknown data can be ensured.  

The dataset to be used in the experiment will be the top 5 features of an image extracted from [4] 
with respect to feature extraction methods. Therefore, there will be 675 ×5 image features for a 
single descriptor in total as the input.  

3 Descriptors for Feature Extraction: LPQ & PHOG 

Local phase quantisation (LPQ) and pyramid of histogram of oriented gradients (PHOG) are two 
descriptors that has great performance in extracting features. They’re also the descriptors applied in 
[4]. Also, both of them have been extensively used for static and temporal facial expression analysis 
which have shown good performance in object recognition as well [4].  

4 Preprocessing 

Before the actual training, the dataset needs to be preprocessed. To get a better view of the dataset. I 
split the data into two separate datasets, as the data are extracted by two different algorithms to be 
compared with each other later. Next, I drop the columns which are irrelevant to the problem, 
meanwhile, handling the missing value in the dataset by replacing them with the mean value of its 
column. Then, I normalised the data with standard scalar in sklearn, which transform the 
distribution of input features to have a mean=0, while standard deviation=1. One of the most 
important thing is to split dataset into train and test set, so as to maintain the robustness of the 
model, which is also a way to see if our model can tolerate such random (‘wild’) data that are 
unknow to itself.  

For splitting dataset, I choose 80% of the overall data as the training set, and the rest of 20% are for 
testing cases after an optimal model is built. Similarly, I used inbuilt function in sklearn for splitting 
the dataset. As the model should be modified multiple times for adjusting the parameter to find the 
optimal setting, a validation set is also required for this purpose. Therefore, I split out another 20% 
of the training set as a validation set. In general, the distribution of the dataset is showed in table 1. 

 
 

 Proportion (%) Number (features) 
Training set 64 432 

Validation set 16 108 
Test set 20 135 
Total 100 675 

 
 Table 1. Distribution of the dataset after train_test splitting 
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5 Network Models & Evaluations & Result  

A neural network is characterized by (i) Pattern of connections between the neurons (architecture). 
(ii). Method of determining the weights (iii). Activation function [10]. Based on these instructions, 
the initial network model I used is a simple modification of multi-layer perceptron (MLP).  
 

NN_MLP( 
  (input): Linear(in_features=5, out_features=3375, bias=True) 
  (hidden1): Linear(in_features=3375, out_features=675, bias=True) 
  (hidden2): Linear(in_features=675, out_features=96, bias=True) 
  (output): Linear(in_features=96, out_features=7, bias=True) 
) 

It is a 4 layer fully connected neural network with backpropagation method to update weights 
automatically. In order to increase sparseness, an elementwise activation function rectified linear 
units (ReLUs) layer can be applied after any convolutional layer. The ReLU layer deals also with 
the vanishing gradient problem in the error backpropagation phase.[11] Since the problem to be 
solved is a multi-class classification, which cannot be solved by a definite score of the output to 
predict the class. Therefore, the model I built will choose the intended class based on the highest 
probability in seven labels.  

After the training process, an output with 7 dimensions will be returned. Each row indicates 7 
probabilities towards seven categories. Fig 1 shows a general structure of the network model. There 
will be 675 × 7 = 3375 neurons in the input layer, 675 neurons in the first hidden layer, 96 neurons 
in the second, and 7. 

 
 

 
 

 

 

 
 
 
 
 
 
 
 

 

Fig. 1. Initial ANN Structure: 4-Layer NN with RELU 

The method is basically focused on the improvement of backpropagation. When training, there are a 
couple of hyper parameters that should be discussed. For the performance of BP, it is related to the 
batch size, learning rate, and optimizer. In my following experiments, I will adjust these parameters 
to find the optimal combination.  

I used cross entropy loss as loss function, as it can describe the probability distribution over classes 
of each input which represent the category as well. For optimizer, I choose SGD at this stage. 
Starting from a large learning rate to see how the loss will be, then use a standard LR to see the 
difference.  
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The evaluation method I used is a manually generated function which after matching with the label, 
then compute the accuracy and loss with the test set.  

The result for classification is showed by train/validation/test accuracy/loss with respect to LPQ and 
PHOG  using the network above is showed in Table 2 below.  

 
Optimizer = SGD, loss_func= CrossEntropyLoss(), LR = 0.6, No_Batch, EPOCH = 1 

1st   Train Accuracy Train Loss Validation Accuracy Validation Loss Test Accuracy Test Loss 
LPQ 0.134 1.947 0.148 1.948 0.148 1.949 
PHOG 0.153 1.947 0.167 1.945 0.126 1.930 

 
Optimizer = SGD, loss_func= CrossEntropyLoss(), LR = 0.2, No_Batch, EPOCH = 1 

2st   Train Accuracy Train Loss Validation Accuracy Validation Loss Test Accuracy Test Loss 
LPQ 0.148 1.945 0.157 1.947 0.126 1.947 
PHOG 0.148 1.946 0.157 1.949 0.148 1.947 

 

We can see that without batch learning, the accuracy and loss for train, validate and test set are quite 
similar. Despite the fact that the result is not good, it is still hard to distinguish which parameter 
should be adjusted. Besides, the weight is updating in a real slow speed. As the currently most 
widely used training algorithm for large-scale ML tasks is called Mini-batch Stochastic Gradient 
Descent (MGD), which improves upon the simplest but powerful Stochastic Gradient Descent 
(SGD) method. [12] For further experiment, I applied mini-batch gradient descent. In this way, the 
training set is divided into many small batches, and the losses is calculated for each batch. 
Therefore, the updating speed of weights will be increased a lot (compared to previous updating 
after the whole dataset is trained) 

 

6 Optimization 

6.1 Model based optimisation: 

After several times of experiments, it seems that my model is very likely to overfit as the training 
loss and validation loss shows no tendency to drop. Therefore, in order to avoid overfitting, I add a 
dropout layer to automatically drop 20% of the neurons in the network which will lead to 
overfitting.  
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Fig. 2. Final ANN Structure: 4-Layer NN with RELU & Dropout 

The network structure is showed below, and the following experiments will based on this model.  
NN_MLP( 
  (input): Linear(in_features=5, out_features=3375, bias=True) 
  (hidden1): Linear(in_features=3375, out_features=675, bias=True) 
  (hidden2): Linear(in_features=675, out_features=96, bias=True) 
  (output): Linear(in_features=96, out_features=7, bias=True) 
  (dropout): Dropout(p=0.2) 
) 

 
 
 

Optimizer = SGD, loss_func= CrossEntropyLoss(), LR = 0.6, Batch_size = 60, EPOCH = 100 
 
LPQ: 
Train_loss: 1.946, Train_accuracy: 0.143 
validation_loss: 1.945, validation_accuracy: 0.157 
Test_loss: 1.946, Test_accuracy: 0.133 

 
PHOG:  
Train_loss: 1.946       Train_accuracy: 0.149  
Validation_loss: 1.945  Validation_accuracy: 0.157 
Test_loss: 1.946,       Test_accuracy: 0.133 

 

Still setting the initial EPOCH size to very large to make it overfit, so as to see the overall trend of 
the loss change while set a fast learning rate. We can see that the training loss vary a lot but for 
validation loss remains no change. Referring to the output it returns, which shows that the accuracy 
rate is more likely performing random guessing. From the plot we can see that, the data is very 
likely to be overfitting. By multiple times of on hand experiment, I found that the model should set 
a very slow learning rate, and the EPOCH size should not be over 10 will get a relative stable result, 
but the result is still not desirable.  
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Furthermore, after multiple times of iteration, I find that each model has good performance and bad 
performance. Thus, I tried to find out the optimal model when training with validation set, and later 
use this model to fit the test set.  

 

In this case, the optimal result is showed below.  
 
Optimizer = SGD, loss_func= CrossEntropyLoss(), LR = 0.003, Batch_size = 60, EPOCH = 10 
Average case:  
Train_loss: 1.948  Train_accuracy: 0.138  
validation_loss: 1.951  validation_accuracy: 0.148 
Test_loss: 1.940  Test_accuracy: 0.202 

 

7 Thresholding 

For the technique of thresholding in [7], I implement based on the previous model. The key point of 
the thresholding lays at distinguishing boundaries when two classes are very close. In my case, I 
replace the SoftMax function to sigmoid, and then convert the label to One-hot-encoding. After 
that, I iterate over threshold, give the rage from [0.520, 0.550] 
    encoder = OneHotEncoder() 
        output = net(x.float()) 
        #print(output) 
        y_pred = (output > THRESHOLD).numpy() 
        y_logit = encoder.fit_transform(y.reshape(-1,1)).toarray() 
        y_logit = torch.LongTensor(y_logit)  
        y_p = torch.LongTensor(y_pred) 
        print(y_logit) 
        print(y_p) 

 
threshold Train accuracy  Validation_accuracy Test_accuracy 

No threshold 
0.138 0.148 0.202 

0.520 
0.142 0.144 0.201 

0.530 
0.163 0.165 0.210 

0.540 
0.200 0.224 0.214 

0.545 
0.210 0.220 0.230 

0.550 
0.220 0.240 0.250 

 
 

Therefore, the threshold is actually working! 
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8 Future work  

Give a more detailed implementation over the threshold computation. Modified the model more 
well as the overfitting problem is still very obvious. Meanwhile, the accuracy improved not that 
obvious, and the model is not stable enough, as each time the result varies quite much. Besides that, 
maybe I’ll try another network, a more complex network for implementation.  
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