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Abstract. The popularity of using neural networks in performing data analysis and supervised learning predictions has 

led to the emergence of various analysis techniques, which continue to be refined based on previous findings. This 

research aims to investigate binary classification using a basic neural network and Long Short-Term Memory (LSTM) 

model on time series data, in particular the pupillary response of human participants based on the anger video dataset. 

The application of brute-force analysis suggests that the choice of summarized statistical input features (or lack thereof) 

appear to have little impact on the model prediction accuracy, yet the initial weights assigned from input to hidden 

neurons affects the output predictions. Given the statistical summary of eye-gaze input features, a basic neural network 

does not reliably classify the nature of anger portrayed on videos.  
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1 Introduction 

Neural networks are researched extensively in the computing field and used in a variety of situations in solving business 

problems, such as generating forecasts based on existing data. It is often challenging to decide on the optimal 

hyperparameters to train a neural network model. When training a neural network model, the choice of hyperparameters 

includes the initialisation of weights, input features, and the number of hidden neurons in the hidden layer. Existing 

weights are updated with the newly calculated weights based on the error values computed in the backpropagation step. 

In weight visualization curves (WV-curves), the average contribution of a neuron from one layer to another is calculated 

based on the weight values [6]. Early literature has discovered that by identifying hidden neurons with similar 

functionality, these somewhat redundant neurons can be pruned from the network in order to improve generalization [2].  

This research paper explores the use of analysis techniques on time series data, particularly on human physiological 

signals, using a binary classification neural network model. Analysis techniques discussed in this report include brute 

force analysis, applying magnitude measures such as Q-contribution, a coined term used in this report which refers to the 

contribution of an input neuron to an output neuron, based on the Q formula in Gedeon’s 1997 paper on input analysis on 

magnitude and functional measures [3]. The final results produced by the model are affected by the initial weights which 

are assigned from input to hidden neurons, which supports the notion that weight initialisation of inputs has a substantial 

impact on the network performance.  

A study in 2017 by Hossain and Gedeon [4] used a “leave-one-video out process” in measuring model classification 

accuracy on an observers’ ability to distinguish between elicited real and posed (acted) smiles in videos. Another study 

in 2017 by Chen, Gedeon, Hossain, and Caldwell [1] investigated a total of 22 participants’ physiological signal, mainly 

the pupillary response, compared to their verbal response in detecting the veracity of anger expressed in videos. The 

obtained mean accuracy classification results in the anger recognition study were 95% for pupillary response compared 

to 60% from the verbal response of participants. The anger dataset was chosen for the research described in this report. 

The objective in applying the aforementioned analysis techniques is to find out how each input feature contributes to the 

final output obtained, which is useful to determine how effective the network is when provided by summarized statistical 

measures of a particular type of time series data. This research has been extended to include the analysis of a more 

complete version of the anger dataset, with the raw data of participants’ left and right eye pupillary response. For the 

extended research, a supervised deep learning classifier, the Long Short-Term Memory (LSTM) [7] model was trained 

and tested on the updated dataset. The analysis approach using both types of models on the anger dataset is described in 

the next section. 

2 Analysis Techniques and Implementation 

The main goal of this research is to determine the importance of individual statistical measures in time series data, 

particularly in the chosen anger dataset, when applied to a binary classification neural network and LSTM model, based 
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on existing analysis techniques in literature. In order to achieve the objective, the following process has been undertaken: 

initial preprocessing of both versions of the anger dataset, defining a customised neural network structure and LSTM 

model, dividing the dataset into training and testing data, applying the analysis techniques when training and then testing 

the models with the respective train and test data, and finally evaluating the performance of the neural network model.  

 

 

 

 

Fig. 1. Fully-connected neural network structure (6 input neurons, 10 hidden neurons, and 2 output neurons). 

When pre-processing the initial version of the data, the desired input features of the dataset were selected and column 

features which were not meaningful (i.e. order of video appearance, video name) were removed. In the readme file of the 

first version of the anger dataset, it was stated that column 2 (video name) should be omitted when predicting for the class 

label, which is either ‘Genuine’ or ‘Posed’. Version 1 consisted of the statistical measures of 22 participants’ eye gaze 

(pupillary response) data, which were already normalised to the 0-1 range. The output class labels were converted into 

integer value representations: Genuine is 1 and Posed is 0. I have selected 6 input features: 'Mean', 'Std', 'Diff1', 'Diff2', 

'PCAd1', 'PCAd2' and 2 output class labels (targets): ‘Genuine’ or ‘Posed’. After a random shuffling to the order of the 

data, 80% were allocated as the training set, with the remaining 20% as the test set. The training set was fed into a custom-

defined neural network as shown in Figure 1, with uniform distribution of initial weights, 10 hidden neurons, using the 

sigmoid activation function. The two-layer neural network is trained using error backpropagation and Stochastic Gradient 

Descent (SGD) as an optimiser, which holds the current state and updates the parameters based on the computed gradients. 

Cross-entropy loss is used to evaluate the network’s performance on the training set.  

An updated second version of the anger dataset was used for the deep learning approach. The second version, which 

consisted of raw data samples, had a different representation than the statistical summary in the initial dataset. The raw 

pupillary diameter (PD) for each participant is recorded separately in two respective Excel files for the left (PDLeft.xlsx) 

and right (PDRight.xlsx) eye. Each Excel file contains multiple tabs, each tab representing a different video. Each column 

in the Excel sheet tab represents the sequence of a participant’s pupillary response over time, throughout the duration of 

watching that particular video. The timestamp of each row is approximately 1/60th second after the previous row. The 

timestamp and sampled data for each participant watching each specific video in both files correspond with each other. 

An Excel file consisting of the mean PD values for left, right and both eyes combined, of all participants across all videos 

was also provided. 

When pre-processing the raw values of left and right PD (in their respective files), the first step was to perform min-max 

normalization according to each participant’s PD sequence. A sequence in this context is defined as the collective PD 

values (either right or left) of a participant throughout the duration of a specific video. The min-max normalisation 

formula, which transforms the current data values to a range between 0-1 is provided below in (1).  

𝑑𝑖′ =
𝑑𝑖 − 𝑚𝑖𝑛

max − 𝑚𝑖𝑛
 

 

(1) 

The 0 values in each PD sequence is then imputed with the mean of all PD values in that particular sequence for both left 

and right PDs. Empty columns which contained Nan values were removed, as not all participants watched every video. 

Video IDs which began with ‘T’ were videos portraying true anger, and labelled as ‘Genuine’ and converted to integer as 

class 1, and those starting with ‘F’ were videos of fake anger, which were then labelled ‘Posed’ and converted to class 0. 

A unique session ID was assigned for every unique combination of participant ID and video ID. The left and right PD 

sequences correspond to the assigned session ID for each participant watching a particular video.  
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The order of session ID was randomly shuffled. Similar to the previous vanilla neural network, 80% of the sequence data 

were allocated as the training set, with the remaining 20% as the test set. The training set was fed into a custom-defined 

LSTM, with random distribution of initial weights, 100 hidden neurons, using the sigmoid activation function. The LSTM 

is trained using error backpropagation and Stochastic Gradient Descent (SGD) as an optimiser, which holds the current 

state and updates the parameters based on the computed gradients. Cross-entropy loss is used to evaluate the network’s 

performance on the training set.  

2.1 Brute force analysis 

Brute force analysis was performed on the pre-processed anger dataset by eliminating inputs and comparing the test set 

model predictions with the actual labels from the original dataset. According to [3], eliminating only 1 input led to 

inconsistent result. Hence, in my analysis I have decided to implement pair-wise elimination of inputs. Since there are 6 

input features, the total number of input pair combinations is 15. Similar to [3], for each of the 15 possibilities, 4 networks 

with the same topology (6-10-2) were trained. During training, the weights for the 2 eliminated inputs are excluded. 

 

2.2 Q-contribution 

[6] first defined the measure Pij to measure for an input’s contribution to a neuron in a hidden layer. [3] proposed an 

extension of their technique, which was a measure Pjk to measure the contribution from hidden neuron to output neuron, 

leading to the Q-contribution formula, which is the sum of the cross-product of Pij and Pjk. Q-contribution, the contribution 

of an input neuron to an output neuron in a neural network, is a coined term used in this report, based on the definition of 

the Q formula introduced in [3]. The formulae are listed below. 

𝑃𝑖𝑗 =
| 𝑤𝑖𝑗  |

∑ | 𝑤𝑖𝑗  |
𝑛 𝑖

𝑝=1

 
(2) 

𝑃𝑗𝑘 =
| 𝑤𝑗𝑘  |

∑ | 𝑤𝑟𝑘  |𝑛 h
𝑟=1

 
(3) 

𝑄𝑖𝑘 = ∑(𝑃𝑖𝑟 × 𝑃𝑟𝑘)

𝑛 ℎ

𝑟=1

 

(4) 

3 Results and Discussion 

Each run of the source code file produced some variation in results due to the randomness of the train-test data split and 

the neural network weight initialisations. For the purpose of discussion, below are the results of an example run. 

 
Fig. 2. Accuracy results of networks 1-4 (data points with 4 different respective markers) with 15 different combinations 

of input pair elimination.  
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Figure 2 shows a considerable difference in the range of accuracy results for four different networks trained with each 

input pair elimination combination, from the lowest (41.6%) to highest (62.6%). This shows that there is some effect 

(21% difference) on the accuracy of the model classification predictions for the test set when training with any 

combination of input pair elimination.  

 

Fig. 3. Q-contribution values of input features 1-6 (mean, std, diff1, diff2, PCAd1, PCAd2) to output classes.  

According to Figure 3, the bar graph of Q-contribution values for the 6 input features indicates that all features except 

‘mean’ have a Q-contribution of greater than 0.2. The highest Q-contribution value is diff1, with more than 0.5, which 

suggests that it has the most impact or contribution in the network. The top 3 significant inputs to the network, in order, 

are diff1, PCAd2, and diff2. Table 1 below shows the ranking of input features (according to their column position 

number), from the most to least significant. 

Table 1.  Q-contribution of input features from most significant to least significant 

Model Input features  (Most significant to Least significant) 

Q-contribution 3,6,4,2,5,1 

 

 

Fig. 4. Confusion matrix for evaluating the performance of a trained neural network, showing the number of predicted class labels 

against the actual class labels (predicted class vs actual class). 

Confusion matrix is a good summary visualization of the neural network’s performance and provides more insight to the 

accuracy of the predictions. In Figure 4, the class labels 0 and 1 for both predicted and actual are ‘Posed’ and ‘Genuine’, 

respectively. The x-axis (column values) and y-axis (row values) represent the predicted classes and actual classes, 

respectively. The top left and bottom right quadrants are the True Positives (TP) and True Negatives (TN), in other words, 

the total number predictions in which the model classified correctly [5]. There are 21 False Positives (FP), in which the 

model predicted as ‘Posed’ when the actual label is ‘Genuine’, and 12 False Negatives (FN), which is the opposite. The 

results show the number of unseen (test) data that the network predicts belong in each class and compares the predictions 

to the respective actual class labels. In the context of confusion matrix, the accuracy is calculated based on the sum of TP 

and TN divided by the sum of all of the quadrants (TP, FN, FP, TN).  
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4 Conclusion and Future Work 

In the original study on anger recognition [1], with the focus on pupillary response, the mean classification accuracy was 

95%, whereas the verbal response returned 60%. In the case of brute-force analysis, the accuracy of 4 neural network 

model predictions with 15 combinations of input pairs eliminated shows that there is a 21% difference in range, which 

can either be moderately higher or moderately lower by approximately 10%. For the Q-contribution analysis, the input 

which has the most impact in this particular run example is diff1. The mean pupil diameter of the 22 participants seems 

to have the least impact in the learning of the neural network. These results suggest that the application of brute-force 

analysis and Q-contribution techniques did not provide additional benefits to increase the performance of the binary 

classification model. 

The selected statistical summary features of the anger dataset did not seem to be representative of the dataset or have 

distinct enough patterns for the model to learn from in order to make an accurate prediction that is consistently greater 

than chance (>50%). This implies that the summarized statistical input features of multiple participants’ pupillary 

response do not lead to reliable neural network predictions of the nature of anger portrayed on videos. Therefore, based 

on the applied analysis techniques above, the choice of input features, including the removal of any number of the chosen 

6 input features during training, appears to have little impact on the model predictions. Extended research on the chosen 

anger dataset to predict videos instead of the ‘Genuine’ or ‘Posed’ label would lead to further insights on using statistical 

features of the pupillary response. Other possible future work involves investigating the effect of applying the techniques 

described in this paper or in related literature on other types of physiological signal data, such as Electrodermal activity 

(EDA), heart rate variability (HRV) and skin temperature (ST).  
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