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Abstract 
Other’s emotions are not just registered consciously but can also produce 

non-conscious physiological responses in observers. This study investigates 

the effectiveness of a variable threshold for a recurrent LSTM neural 

network trained to classify genuine and posed displays of anger from the 

involuntary variation in an observers’ pupil size. Models were trained and 

tested on three different arrangements of the data to investigate the impact 

reserving different types of data on model accuracy.  A variable threshold 

can be useful in order to reduce or even eliminate classification errors, as 

well as improve accuracy. Though the utility of thresholds that eliminate 

classification errors differed between data arrangements, varying the 

classification threshold led to an improved accuracy of the model, achieving 

an overall accuracy of 85.5%. While this was a lower classification accuracy 

than previous studies with this data, this model outperformed observer’s 

conscious determinations of the sincerity of anger. Variable classification 

threshold could therefore be a useful addition for future emotion 

classification research.  

 

1. Introduction 
Emotions are not only interpreted by the human brain; rather, the human body too can produce 

distinct involuntary physiological reactions when interpreting the emotional nature and sincerity of 

another’s actions (Hossain et al., 2016; Chen et al., 2017). This research seeks to consolidate upon 

previous investigations into classifying real and fabricated displays of anger from the pupillary 

responses of an observer, through the creation of a binary neural network classifier (Chen et al., 

2017). While unconscious physiological responses to anger may be better predictors of emotional 

veracity than individuals’ own conscious determinations of emotion, uncertainty still exists, and 

neural net classification errors still occur (Chen et al., 2017). This research hence seeks to explore the 

applicability of threshold variability for the classification of genuine and posed displays of anger in 

order to minimize False Positive and False Negative errors and achieve superior accuracy.  

 

As noted in Kogan (1991), the output node of a binary neural network classifier cannot be viewed as a 

confidence factor for the classification. As such, the threshold for a positive classification is not fixed 

at the traditional value of 0.5 but rather, can be varied (Kogan 1991; Milne et al., 1995). Informed by 

Kogan (1991), Milne et al. (1995) implement a variable classification threshold for identifying pixels 

containing dry sclerophyll forest from satellite imagery and aerial photographs.  

 

A variable threshold for classification is particularly useful when the costs of False Positives and 

False Negatives are not the same (Corbett-Davies et al., 2017). In medical classification, a False 

Positive result leads to a strain on medical resources and induced anxiety on the patient and their 

family; a False Negative classification, on the other hand, can cost valuable treatment time and 

potentially be fatal (Corbett-Davies et al., 2017). Adjusting the threshold for classification and 

identifying the points at which False Positive and False Negative classifications are minimized, as 

done by Milne et al. (1995), can be a useful means of balancing these costs. This research will thus 

implement the techniques outlined by Milne et al. (1995) on an entirely different domain: the 

classification of emotional sincerity. 

 



1.1 The Data  

 
The data used for this research is drawn from Chen et al.’s (2017) investigation into physiological 

responses of genuine and posed states of anger. In their experiment, 20 participants watched video 

clips of real and acted presentations of anger, 10 of which were genuine displays of anger from news 

recordings or documentaries and 10 were acted within movies or tv shows. Participants’ right and left 

eye pupillary dilation response to viewing these clips were recorded at regular intervals for each of the 

20 videos.  

 

To make use of this data, the average pupil dilation of each time interval for each participant was 

taken, for a total of 387 observations. These values were then normalised between the maximum and 

minimum pupil dilation exhibited for each participant over the course of the 20 videos. As some 

videos are longer than others, videos shorter than 186 timesteps were padded with zeros at the end of 

the sequence. Finally, each video was designated a target value of either 1 for genuine displays or 0 

for acted presentations of anger. The following figure displays the average normalised pupil response 

to viewing videos of both genuine and posed anger over the course of each video for each participant.  

 

Figure 1: Normalised pupillary response to real and posed displays of anger over time  

 

 
 

Following data pre-processing, the data were split into training, validation and testing sets. How these 

data are split however, inherently embodies assumptions about its nature and general applicability. As 
such, three different training, validation and test data sets were made from the data, each with their 

own set of assumptions. These three different cases will be compared and used to train, validate and 

test the models.  

 

To construct the first datasets, video and participant information was ignored (referred to as the 

randomised datasets). The records were shuffled with 15% was randomly assigned to a validation set 

and a further 15% to the test dataset. The remaining 70% of the records were used to train the model. 

By not discriminating by video or participant, this dataset split assumes that there is little difference 

between the physiological responses of individuals or responses to the individual videos. It therefore 

should not matter if the model has already been trained on an observation of a particular video or by a 

particular participant.  

 

The second datasets discriminated by video (referred to as video datasets). Each video may incite the 

same physiological response in participants due to the course of tension unique to the video itself. 
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Furthermore, with different length of padding, the model may learn these characteristics rather than 

the pupillary responses. Videos were randomly selected and reserved for the validation and test 

datasets. To maintain similar class distribution, each validation and testing sets contained responses to 

one genuine and one posed video, as well as half of the responses to a video of each class 

(approximately equating to 15% of the data each). The pupillary responses to the remaining 14 videos 

were used to train the model. The model will therefore be tested on responses to videos that have not 

been seen in training.  

 

The final datasets discriminated by participant (referred to as participant datasets). The validation and 

testing datasets were both randomly assigned three participants, roughly equating to 15% of the 

overall data each. The remaining 14 participants comprised the training dataset. This assumes that 

participants may have unique characteristics when viewing genuine or posed displays of anger that 

could be learnt by a model. These datasets aim to address this concern by testing the model on 

participant information unseen by the model.   

2. Methods:  
 

To classify pupil responses of participants as observations of either genuine or posed displays of 

anger, a Long Short-term Memory (LSTM) artificial recurrent neural network is constructed with 

single input and output neurons. As this network will be a binary classifier, binary cross entropy loss 

is selected as the loss criterion. The Adaptive Moment Estimation (Adam) optimiser function is 

selected has been successfully used for robust optimisation of previous LSTM models (Kong et al., 

2017). The final prediction must be either 0 or 1; hence, the output of the final layer must be a value 

between 0 and 1. As such, the sigmoid activation function is selected for the final output neuron.   

 

2.1 Hyper-parameter selection:  

 
In order to select the optimal hyper-parameters, a number of tests were conducted. To identify the 

most optimal settings, the number of hidden neurons, learning rate, number of epochs, number of 

layers and the dropout rate were varied and the effects of these settings on the three validation 

datasets were compared. To maintain consistency, each test was conducted with the default 

classification threshold of 0.5 and a batch size of 32. It must be noted that this was an iterative 

process, moving back and forth between these hyperparameter tests to identify the most optimal 

balance of each.   

 

2.1.1 Hidden Neurons:  

To identify the optimal number of LSTM hidden neurons for training, single hidden layer LSTM 

models were constructed with the number of neurons ranging from 5 to 25. For this test, the learning 

rate was kept consistent at 0.001 and the number of epochs at 200. 

 

2.1.2 Learning Rate: 

To investigate the effect of varying the learning rate on training, rates between 0.05 and 0.0001 were 

tested. These tests were conducted with a single layer model with 20 hidden LSTM units over 100 

epochs  

 

2.1.3 Epochs: 

To optimise the number of epochs, a graphical approach was taken. By comparing the training and 

validation loss graphs, the optimal number of epochs to avoid over-training was identified. These 

models were trained with a single hidden layer LSTM model with 20 hidden neurons, with a learning 

rate of 0.0005.  

  

2.1.4 Number of Layers:  



To test the impact on the number of layers on training, models of 1, 2 and 3 hidden layers were 

constructed. Each of these models contained 20 hidden neurons and had a learning rate of 0.0005 and 

was trained over 120 epochs.  

 

2.1.5 Dropout Rate:  

Overfitting has been a reported issue with LSTM recurrent neural networks (Merity et al. 2017) and 

indeed was a problem in a previous iteration of this research (Assignment 1). To combat this issue, 

dropout rates for the LSTM layer between 0 and 0.5 were tested using a two hidden-layer LSTM 

model with 20 hidden neurons and a learning rate of 0.0005, over 120 epochs.   

2.2 Classification threshold 
 

After selecting the most optimal hyper-parameters, the threshold to which an output is classified as a 

display of genuine anger will be explored. There are two aims in varying the classification threshold 

of this recurrent neural network. Firstly, the thresholds at which false positive and false negative 

classifications are minimised will be identified for each of the three test datasets. And secondly, the 

associated accuracy for each classification threshold will be identified, thus optimising the 

classification accuracy of the model. Following Milne et al. (1995), the threshold of the final layer 

output for positive classification is varied by 0.1 increments. For each step, the number of False 

Positive and False Negative classifications in each test dataset are recorded, as well as the mean test 

accuracy across these three cases. The thresholds that result in no False Positive and False Negative 

classifications for each dataset will hence be identified. These results will be compared with the 

results obtained from a fully-connected artificial neural network with one hidden layer of 10 neurons, 

a learning rate of 0.05. This model was trained over 200 epochs using aggregate data such as the mean 

and standard deviation of pupil dilation for each observation, as well as principle component analysis.  

3. Results 

3.1 Hyperparameter selection 

 
Conducting the tests outlined above, the following results were obtained: 

 

3.1.1 Hidden Neurons:  

 

Hidden 

Neurons 

Randomised 

Validation 

Accuracy 

(%) 

Video 

Validation 

Accuracy 

(%) 

Participant 

Validation 

Accuracy 

(%) 

Mean 

Training 

Accuracy 

(%) 

Mean 

Validation 

Accuracy 

(%) 

Difference 

Training - 

Validation 

5 57.6 19.6 64.4 68.9 47.2 21.7 

10 54.2 53.6 52.5 59.6 53.5 6.2 

15 57.6 48.2 76.3 65.0 60.7 4.3 

20 79.7 71.4 55.9 72.0 69.0 3.0 

25 54.2 44.6 55.9 66.9 51.6 15.3 

 

As the number of LSTM neurons increased, the accuracy of each validation set increased before 

dropping off when too many neurons were added. This drop in accuracy could be considered a sign of 

the model overfitting, as it ‘memorises’ the training data, but does not work as well on the validation 

set. The model accuracy on randomised data and unseen video validation datasets both peaked with a 

hidden layer of 20 neurons, before decreasing dramatically with 25 hidden neurons. However, the 

accuracy of the model on the unseen participant validation set peaks with a hidden layer of 15 neurons 

before decreasing with 20 and 25 hidden neurons. This suggests that different methods of dividing 

data for training and validation may influence how well a model may learn the available data and how 

easily it may over-train.  
 



While the mean training accuracy fluctuated with the addition of more hidden neurons, the difference 

between the mean training accuracy and the mean validation accuracy steadily declined until 20 

hidden neurons, before increasing again dramatically at 25 hidden neurons. The large difference 

between average training and validation accuracy with 25 hidden neurons is likely an indication that 

the model is overtrained on the training data, while the large difference between average training and 

validation accuracy at only 5 hidden neurons suggests that the model is undertrained and is not yet 

familiar with the data.  

 

While 20 hidden neurons were not optimal for every validation dataset, it produced the greatest 

average training accuracy and test accuracy of all tested combinations, as well as the smallest 

difference between average training and validation accuracies and will therefore be used in future 

trials.  

 

3.1.2 Learning Rate:  

 

To identify the optimal learning rate for training, the following results were obtained. These recurrent 
LSTM models were trained over 100 epochs with 20 hidden neurons.  

 

Learning 

Rate  

Randomised 

Validation 

Accuracy 

(%) 

Video 

Validation 

Accuracy 

(%) 

Participant 

Validation 

Accuracy 

(%) 

Mean 

Training 

Accuracy 

(%) 

Mean 

Validation 

Accuracy 

(%) 

Difference 

Training - 

Validation 

0.05 54.2 16.1 50.9 62.2 40.4 21.8 

0.01 78.0 48.2 55.9 65.2 60.7 4.5 

0.005 79.7 66.1 55.9 73.2 67.2 6.0 

0.001 78.0 71.4 54.9 72.1 68.1 4.0 

0.0005 72.9 71.4 83.1 80.4 75.8 4.6 

0.0001 54.2 48.2 49.2 53.3 50.5 2.7 

 

High learning rates had little benefit to either training or testing accuracy, due to a large fluctuation in 

neuron weights. Notably, the model validated against the unseen video observations performed 

particularly poorly with a learning rate of 0.05, performing well below mere random. The model 

validated against the randomised validation set performed well with learning rates of 0.01, 0.005 and 

0.001 before decreasing in accuracy with a learning rate of 0.0005. This is in contrast to the unseen 

participant validation dataset which achieved poorer accuracy at learning rates 0.05, 0.01, 0.005 and 

0.001 before a rapid increase at a rate of 0.0005, then falling again at a rate of 0.0001. Each model 

performed poorly with a learning rate of 0.0001 indicating that the model likely undertrained. A 

learning rate of 0.0005 was selected for future analysis as this had the largest average validation 

accuracy and was the only learning rate that performed well with unseen participant data.  

 

3.1.3 Epoch 

 

The optimal epoch for training the model was found by comparing the loss of the training model to 

the loss of the validation model for each epoch. The loss graph for one of models of a network with 

20 hidden neurons with a learning rate of 0.0005, a batch size of 32 over 150 epochs is as follows:  



 

Figure 2: Training and 

Validation Loss for identifying 

optimal number of epochs 

 

The training and validation loss 

diverge following the 120th 

epoch, suggesting that the model 

begins to overfit thus decreasing 

its effectiveness when classifying 

unseen data. An epoch range of 

120 was therefore selected for 

future training to increase 

validation accuracy and decrease 

overfitting.  

 

 

 

 

3.1.4 Number of Layers:  

 

Testing the effects of the number of hidden LSTM layers, the following results were obtained: 

 

Layers  Randomised 

Validation 

Accuracy (%) 

Video 

Validation 

Accuracy 

(%) 

Participant 

Validation 

Accuracy (%) 

Mean 

Training 

Accuracy 

(%) 

Mean 

Validation 

Accuracy 

(%) 

Difference 

Training -

Validation 

(%) 

1 72.9 71.4 74.6 81.7 73.0 8.7 

2 76.3 71.4 81.4 84.1 76.4 7.8 

3 91.5 73.2 86.4 90.7 83.7 6.9 

 

Increasing the number of layers led to an increase in accuracy across each of the validation sets as 

well as an increased training accuracy. Having three layers also led to the smallest gap between 

average training and validation accuracy. What is not captured by this table is the computational strain 

that running a model with 3 layers required on my system; python crashed on multiple occasions and 

if it did complete training, each epoch took on average 4.2 seconds (as compared to 0.8 seconds with 

1 hidden layer and 1.4 seconds with two hidden layers). As such, due to technical limitations, I was 

unable to proceed with three hidden layers. This however does seem promising and could be tested in 

the future with better infrastructure. As such, two hidden layers were used instead as the next best 

alternative.  
 

3.1.5 Dropout Rate: 

 

To combat overfitting, dropout of LSTM units was considered. In testing the effects of dropout rates, 

the following results were obtained:  

Dropout 

Rate 

Randomised 

Validation 

Accuracy 

(%) 

Video 

Validation 

Accuracy 

(%) 

Participant 

Validation 

Accuracy 

(%) 

Mean 

Training 

Accuracy 

(%) 

Mean 

Validation 

Accuracy 

(%) 

Difference 

Training - 

Validation 

0 76.3 71.4 81.4 84.1 76.4 7.8 

0.1 83.1 58.9 86.4 84.3 76.1 8.2 



0.2 83.1 30.4 74.6 86.7 62.7 24.1 

0.3 88.1 35.7 78.0 86.9 67.3 19.6 

0.4 79.7 44.6 79.7 86.1 68.0 18.1 

0.5 86.4 28.0 71.2 85.3 61.9 23.5 

 

Including dropout of LSTM improved the accuracy when validated against a randomised dataset and 

unseen participant data, with accuracy peaking at a dropout rate of 0.3 and 0.1, respectively. Including 

any dropout had significant negative effects on the classification of unseen video data. This suggests 

that the models trained against randomised and participant-based data may have overfitted to the 

training data, thus making dropout a useful addition. However, the model classifying unseen video 

data may not need regularisation and thus, neuron dropout may lead to loss of information and 

classification potential. Due to the marginal higher average validation accuracy and to avoid a 

substantial decrease in accuracy on unseen video data, no dropout was included in future analysis.  

 

At the conclusion of hyperparameter testing, binary classification neural network was created with 
two layers of 20 LSTM units, with a learning rate of 0.0005, trained over 120 epochs with a batch size 

of 32. Throughout this hyper-parameter tuning process, the difficulty of optimising for three different 

validation sets was emphasised – while some validation sets may respond well to some settings, they 

may have the opposite effect for other validation sets that embody different assumptions.  

 

3.2 Classification Threshold  

 
In testing the impact of varying the classification threshold on binary classification, the following 

results were obtained: 

 

3.2.1 Minimising Errors:  

 

Classification 

Threshold 

Randomised Test Video Test Participant Test  

FP FN FP FN FP FN 

0.2 25 0 27 0 11 0 

0.3 18 0 12 0 7 1 

0.4 13 0 10 0 4 4 

0.5 10 2 5 0 4 7 

0.6 9 2 3 0 1 10 

0.7 6 5 2 0 0 13 

0.8 4 7 1 0 0 13 

0.9 0 10 0 1 0 16 

 

 

As the threshold for positive classification increased, the number of False Positive classifications 

decreased while the number of False Negative classifications increased for each of the test datasets. 

For the randomised test set, no False Negative classifications were observed for thresholds of 0.2, 0.3 

or 0.4, while remaining low at thresholds of 0.5 and 0.6. At a threshold of 0.9, no False Positive 

classifications were observed. For the unseen video test set, False Positive classifications decreased as 

classification threshold increased, with little effect on False Negative classifications which remained 

at zero until a threshold of 0.9. The unseen participant test set achieved a lower threshold for no False 

Positive observations than the other test sets; all classifications of genuine anger (positive 

classification) at the threshold of 0.7 were in fact genuine. False Negative errors were eliminated with 

a threshold of 0.2, much lower than the randomised and unseen video test set.  

 



Each of these test sets identified different thresholds for achieving no erroneous classifications: 0.4 

and 0.9 for the randomised test set, 0.8 and 0.9 for the unseen video test set, and 0.2 and 0.7 for the 

unseen participant test set. This suggests that there is no one size fits all approach for reducing 

erroneous classifications as these thresholds depend on the data that the model was trained on, and the 

nature of the test datasets. Nevertheless, across each of the three test sets, no False Negative 

classifications were observed with a threshold of 0.2 while False Positive classifications were 

minimised at a threshold of 0.9. While these thresholds for eliminating False Negative and False 

Positive classifications are less useful than the 0.5 and 0.7 thresholds identified by Milne et al. (1995) 

in classifying dry sclerophyll forest, these limits are more useful than those identified by the fully 

connected model of 0.1 and 1. This is because extreme classification thresholds are often trivial as 

they regard most records as either positive or negative class despite the input data, thus reducing the 

capacity for correct classification.  

 

 

 

 

 

 

 

3.2.2 Maximising Accuracy:   

 

Varying classification threshold also affected the overall accuracy of the models.  

 

 

The accuracy of the models on their respective test sets followed the distribution of errors identified 

above. Classification on the unseen participant data achieved highest test accuracy at thresholds 0.3 

and 0.4 while the randomised test set and unseen dataset achieved highest accuracy at higher 

thresholds such as 0.8 and 0.9. This indicated that the models were much better at correctly predicting 

responses to genuine presentations of anger in the randomised test set and the unseen video test set as 

correct positive classifications were still achieved for higher thresholds, while they were better at 

correctly classifying responses to posed presentations of anger in the unseen participant dataset.  

 

The unseen video dataset particularly benefitted from increasing classification threshold, almost 

achieving perfect accuracy at thresholds 0.8 and 0.9. This is surprising given the relatively lower 

accuracy achieved by the unseen validation dataset when tuning hyperparameters. This suggests that 

the unseen videos in this test set may closer resemble the data used for training than those in the 

validation set.  

 

Accuracy over the three test sets was maximised at a threshold of 0.6, however comparable accuracy 

was also achieved at thresholds 0.7, 0.8 and 0.9. At a threshold of 0.6, 85.5% of records across the 

three datasets were classified correctly, with comparable precision and recall values (84.6% and 

85.7%, respectively). This is a marginal improvement from accuracy at the traditional default 

Classification 

Threshold 

Randomised 

Test Accuracy  

Video Test 

Accuracy  

Participant 

Test Accuracy 

Total 

Accuracy Precision Recall 

0.2 56.14 52.63 81.03         63.3          57.3        100.0  

0.3 68.4 78.98 86.21         77.9          68.4          98.9  

0.4 77.19 82.46 86.21         82.0          73.9          95.6  

0.5 78.95 91.23 81.03         83.7          78.7          89.1  

0.6 80.7 94.73 81.03         85.5          84.6          85.7  

0.7 80.7 96.49 77.59         84.9          88.8          77.6  

0.8 80.2 98.25 77.59         85.4          91.5          74.4  

0.9 82.46 98.25 72.41         84.4        100.0          65.2  



threshold of 0.5, which achieved 83.7% accuracy across the three datasets. While total accuracy 

remained high at thresholds 0.7, 0.8 and 0.9 as model precision increased, this came with a trade-off 

of decreased recall.  

 

These benefits of variable threshold for neural networks have been recognised elsewhere. Pendharkar 

(2004) conceptualises classification threshold as not a static parameter, but rather a value to be learnt 

through the training process in order to maximise a systems classification accuracy, identifying 

improved accuracy in both training and evaluation compared to traditional back-propagated artificial 

neural networks with a 0.5 classification threshold. More recently, Pendharkar (2008) consolidates 

this work by creating learnable threshold that is sensitive to the marginal costs of false positive and 

false negative classifications. Both of these accounts highlight the benefits of a variable classification 

threshold as outlined in Milne et al. (1995), and the increased performance accuracy achieved here.  

 

It must be noted that the performance accuracy achieved here is below that achieved in similar 

classification problems. Chen et al. (2017) created a classifier trained on the present data set of 

pupillary responses to genuine and posed displays of anger, achieving a 95% classification accuracy. 
These results are similar to the neural net classification of real and fake smiles from observers’ 

galvanic skin responses, with a 96.5% classification accuracy (Hossain et al., 2016). The maximum 

achieved classification accuracy in the present research of 85.5% therefore sits below these 

comparable studies. Nevertheless, this accuracy still exceeds the 60% accuracy of conscious, verbal 

responses of participants in determining sincerity of anger (Chen et al., 2017). Furthermore, the 

present recurrent LSTM neural network trained on timeseries data of pupillary dilation achieved a 

higher accuracy than the dense artificial neural network that was trained on aggregate data and 

principle components, which correctly classified 77.9% of records.  

4. Conclusion and Future Work 
 
This research has identified the capacity for binary neural network classifier to discriminate between 

genuine and posed accounts of anger from the unconscious pupillary responses of an observer. This 

was completed with a recurrent LSTM neural network with two layers of 18 units, trained with a 

learning rate of 0.0005, a batch size of 32 over 120 epochs. A variable classification threshold was 

used in order to minimise classification errors and improve the models’ overall accuracy. Models 

trained and tested on three different divisions of the data, a set comprised of randomised participants 

and videos combinations, a set comprised of pupil responses of all participants to videos unseen by 

the model in training, and a set comprised of pupil responses to all of the videos by participants whose 

data was unseen in training. While errors in each of these test sets were eliminated at different 

thresholds, at the thresholds of 0.2 and 0.9, no false negative or false positive observations were 

made, respectively. Increasing the classification threshold to 0.6 led to an increased total classification 

accuracy of 85.5%. While this exceeds the accuracy of conscious choice by participants (60%) as well 

as the accuracy obtained by a fully connected neural network trained on aggregate data for each 

observation (77.9%), it fails to match the accuracy achieved with previous applications of this data 

(95%) (Chen et al., 2017).  

 

The divisions of data had a significant impact on the outcomes of hyperparameter testing and the 

effectiveness of variable classification thresholds. While a composite model was constructed as a 

means of accounting for different circumstances to achieve optimal outcomes across these three cases, 

their differences highlight impact of splitting data into training, validation and test sets and the 

assumptions that are embodied in these actions. Despite my best efforts, each of these models still 

may have had data about specific videos or participants leak into the validation and testing datasets. 

As such, further testing of this model should be conducted with fresh participants and different videos 

of displays of anger. 

 

This project was also limited by technical infrastructure. While a neural network of three hidden 

layers performed well on all datasets during hyperparameter testing, it was not feasible for future 



testing due to the technical limitations of the computer used for training. Future research with stronger 

computational power could further investigate the effectiveness of additional hidden layers on model 

accuracy.  

 

There is also scope to extend this work through the implementation of a classification threshold that is 

learnable through the training of a model (Pendharkar, 2004; 2008). A learnable threshold, sensitive 

to the marginal costs of each error type, could not only improve classification accuracy, but also 

maximise the net social benefit of its outcomes (Corbett-Davies et al., 2017). Furthermore, the 

pupillary response data employed here does not distinguish between ‘shallow’ displays of acted anger 

and ‘deep’ portrayals that are grounded in real emotion for the actor (Hochschild, 1979). This 

research could be extended by creating a multiple class neural network classifier that is able to 

distinguish between shallow acting, deep acting as well as genuine displays of anger. Finally, this 

model does not consider the degree of anger, only its display. A neural network classifier could also 

be trained on ratings of veracity of emotion to consider how different levels of emotion may affect an 

observer’s physiological response.  
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