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Abstract. Bimodal Distribution Removal (BMR) technique and Genetic Algorithm (GA) was implemented in the 

training of a simple 2-layer neural network with the oil well dataset collected from the North West Shelf in Western 

Australian. The hyper-parameters of the neural network model, the BMR and the GA were tuned using trail and error. 

The tuned model was trained on 3 separate dataset of different oil wells and the confusion matrix of testing results were 

generated. By comparing the testing result from training with and without BMR, we learned that BMR implementation 

does not have effects on the accuracy of the model. The tuned model was also used to exam the performance GA feature 

selection, the results indicate GA can improve model accuracy and reduce training time by removing redundant features 

in the dataset. 
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1   Introduction 

Neural networks have the potential to outperform any other parametric estimators given the condition that it has infinity 

of data for training [1]. However, it is usually not the case when analyzing data in the real world where the availability of 

training data is limited. The shortage in the training data usually lead to the trained network model to be very sensitive to 

the actual realization of the training samples. In another word, the network could struggle to learn the patterns that are not 

present in the given training data. This fact increases the variance in the network training. One of solution to this problem 

is to introduce some bias into the network training procedure. Given introducing bias cause its own problem such as 

network training to converge to the incorrect direction, it is sometimes necessary when the availability of training data is 

limited.  

 

Popular techniques used to introduce bias into neural network includes neural network pruning techniques [2] and the 

outlier removal techniques. Neural network pruning removes hidden units in the exist network and reduces network 

complicity. This procedure simplifies the neural network structure and reduces the calculations that the neural network 

can perform. The Outlier removal is to remove the outliers in the training dataset. The removal procedure can take place 

before the training or during the training process. Both methods mentioned above have the potential to improve the bias 

and variance trade off and we will look at the outlier removal methods closely in the next part.  

 

Popular techniques in outlier removal includes Absolute Criterion Method (ACM), Least Median Squares (LMS). Least 

Trimmed Squares (LTS) [3] and bimodal distribution removal (BDR). The idea of ACM and LMS is to minimize the 

absolute or medium error, but both methods are slow to converge. The LTS can increase the rate of convergence, but it 

has its own limitations such as it ignores the fact that the testing data may contain noise and the number of outliers is 

unknown in the real-world dataset [4]. The BDR techniques has the potential to address all the limitations mentioned in 

the above techniques and it is used in the training procedure of this paper.  

 

Bimodal distribution removal (BDR) attempts to remove outliers during the neural network training process. It starts to 

remove outliers when the calculated the error variance of the training samples by the network is reduced to below certain 

threshold (normally 0.1). The outlier removal is based on how far the error of the targeted sample is away from another 

threshold which is calculated in the BDR algorithm. The BDR is designed to address the weakness of other outlier removal 

methods [5]. The idea of implementing BMR in the training process allows the neural network to identify the outlier 

dynamically. Also, it removes the outliers slowly so that the network can still have enough time to learn from the data. It 

also can prevent overfitting and reduce training time.  

 

Another problem which could occur with limited training data is the overfitting on the redundant features in the dataset. 

When these redundant features outweigh the effective features, the performance of the network can be adversely affected. 

To ensure that only the effective features in the training dataset are to be learned by the model, feature selection is required. 

One of the widely used technique for feature selection is the Genetic Algorithm (GA). The GA is a global search algorithm 

inspired by the natural selection [6]. The algorithm contains operators such as mutation, cross over and selection [7].  A 

hybrid version GA can also be implemented to select not only the features but the hyper parameters of the neural network 

model [8]. 



2   Method 

2.1   Oil well dataset 

The oil well dataset used in this paper is obtained from the oil wells in the North West Shelf in Western Australian [9]. 

The data in the dataset was collected from 3 different oil wells. For each oil well, the data contains 10 feature columns 

and 1 label column. The label column marking the quality of the rock samples are created by experienced geologists. The 

10 features are GR (Gamma Ray), RDEV (Deep Resistivity), RMEV (Shallow Resistivity), RXO (Flushed Zone 

Resistivity), RHOB (Bulk Density), NPHI (Neutron Porosity), PEF (Photoelectric), DT (Sonic Travel Time), PHI 

(porosity) and logK (permeability). The labels contain 3 different classes. They are Frac, Ok and Good. The labels were 

used as truth values for training and testing our classifier in this paper.  

 

The oil well dataset was selected to study the effectiveness of bimodal distribution removal technique (BDR) and genetic 

algorithms (GA) on the training of our neural network classifier. For the study of BDR, this dataset can be an ideal choice 

as it contains limited number of samples (less than 200 samples for each well). In such a small dataset, Outliers are likely 

to have a larger impact on the neural network training and therefore their removals can be obvious to detect. For the study 

of GA, the dataset provides 10 features that can be turned on and off during the training to show the effectiveness of the 

algorithm.  

2.2   Neural network 

The design of a neural network plays an important role on its performance. For each problem to solve, the structure of the 

neural network should be designed to fit the nature of the problem [10]. Hyper parameters of the neural network should 

also be tuned to address overfitting. In our problem, we used a simple neural network, which consisted of 2 fully connected 

layers. The number of neurons in the hidden layer was one of the hyper-parameters to be tuned. The output layer had 3 

neurons, each of them was corresponding to one of the three classes of rock quality to be classified. Sigmoid activation 

function was applied on the outputs of the first layer neurons. The cross-entropy was selected as the loss function. During 

the training, 10-Fold Cross validation technique was used to prevent the model from overfitting. The provided train and 

test dataset were first combined and then randomly separated into two groups at a ratio of 4:1. The bigger group was used 

for cross validation training and the smaller group was used for additional testing. 

 

Our strategy to determine the neural network hyper parameters was by trial and error. First, we determined the type of 

hyper parameters to be tuned. These parameters include the number of hidden neutrons, number of epochs and learning 

rate and the choice of optimizers between SGD (Stochastic Gradient Descent) and ADAM (Adaptive Moment 

Estimation). In our strategy, multiple training and testing were conducted with different values of hyper – parameters. 

The results of the experiment were summarised in Table 1.  

 

Table 1. Test and Validation Accuracies from tuning the neural network Hyper Parameters  

 

  SGD Optimizer ADAM Optimizer 

Num. 

Epoch 

Num. 

Hidden 

Neuron 

Learning 

Rate 

 0.05 

Learning 

Rate  

0.1 

Learning 

Rate  

0.2 

Learning 

Rate  

0.01 

Learning 

Rate  

0.05 

Learning 

Rate  

0.1 

Test and Validation Accuracy (Validation Accuracy/Test Accuracy) 

100 5 0.42/0.48 0.55/0.48 0.66/0.48 0.62/0.78 0.71/0.58 0.68/0.56 

30 0.48/0.45 0.56/0.52 0.66/0.70 0.68/0.69 0.64/0.81 0.67/0.71 

50 0.49/0.48 0.52/0.49 0.64/0.65 0.70/0.61 0.66/0.69 0.66/0.64 

300 5 0.57/0.47 0.66/0.55 0.67/0.75 0.7/0.72 0.73/0.61 0.74/0.57 

30 0.57/0.59 0.7/0.7 0.65/0.76 0.70/0.73 0.67/0.70 0.73/0.58 

50 0.69/0.52 0.72/0.7 0.63/0.72 0.68/0.64 0.70/0.68 0.7/0.67 

500 5 0.66/0.64 0.63/0.82 0.66/0.70 0.68/0.67 0.6/0.8 0.63/0.64 

30 0.71/0.69 0.69/0.60 0.76/0.63 0.68/0.67 0.7/0.64 0.66/0.72 

50 0.69/0.65 0.65/0.77 0.69/0.62 0.68/0.75 0.67/0.76 0.70/0.68 

 

 

The result in the table indicated that the best test and validation accuracy can be achieved by training the model using an 

ADAM optimizer, a learning rate of 0.01, 30 hidden neurons and 300 total training epochs. These obtained hyper-

parameters were used in the paper to determine other parameters in the later study. 

 



2.3   Bimodal distribution removal   

Bimodal distribution removal (BDR) technique is used to remove possible outliers in the dataset during training. Same as 

the neural network, the BDR technique also have parameters to be tuned to improve its effectiveness. In our study, trial 

and error approach was used to optimize the parameters. The parameters of BDR to be investigated are the loss variances 

range where the BDR starts and finishes, the BDR constant and the BDR frequency (number of epochs to wait before 

another BDR removal occurs). The results of the experiment were summarised in Table 2. 

 

Table 2. Test and Validation Accuracies from tuning the BDR Hyper Parameters  

 

BDR 

Frequency 

BDR 

Constant 

Loss Variance Range (Start, Finish) 

(0.1, 0.01)  (0.6, 0.1)  (0.7, 0.5) 

Test and Validation Accuracy 

(Validation Accuracy/Test Accuracy) 

10 0.4 0.69/0.65 0.70/0.63 0.67/0.61 

0.8 0.60/0.79 0.72/0.69 0.62/0.72 

0.9 0.65/0.63 0.68/0.69 0.69/0.66 

20 0.4 0.70/0.66 0.68/0.69 0.66/0.78 

0.8 0.65/0.69 0.71/0.71 0.68/0.58 

0.9 0.70/0.69 0.66/0.66 0.68/0.62 

50 0.4 0.69/0.62 0.69/0.74 0.67/0.65 

0.8 0.63/0.72 0.71/0.75 0.69/0.67 

0.9 0.67/0.65 0.71/0.67 0.72/0.64 

 

The result in the table indicated that the best test and validation accuracy can be achieved by implementing the BDR using 

a loss variance range of 0.6 and 0.1, a BDR constant of 0.8 and a BDR frequency of 20.  

2.4   Genetic Algorithm (GA) for Feature Selection 

Genetic algorithm (GA) is search algorithm inspired by natural selection. It is widely used in the feature selection [11]. 

Training a neural network with many features can be time consuming. In this paper, the effectiveness of using GA on the 

training of the oil well dataset was studied. The oil well dataset contains 10 feature columns. Each feature column can be 

turned on and off by the GA.  

 

To implement the GA, we first encoded the 10 feature columns in the dataset as binary strings. A 1 in a position in the 

binary string means the corresponding feature in that position is turned on and a 0 means the feature is turn off. For 

example, a string of 1111111111 means all 10 features are turned on and used in the training. Then we defined the fitness 

function to be a function of testing accuracy and training time. In our case, the feature combination which lead to a higher 

testing accuracy and a lower training time yields a higher fitness score. The trial and error approach were also used to 

optimize other parameters for GA. The parameters of GA to be tuned were cross rate, the rate at which the existing feature 

combinations can exchange their feature representations, the mutation rate, the chance that a certain feature representation 

can flip to the opposite side and the number of generations. The results of the tuning experiment were summarised in 

Table 3. 

 

Table 3. Fitness Score from tuning the GA Hyper Parameters  

 

Cross Rate Mutation Num. Generations 

2  4 6 

Fitness Score 

0.8 0.01 67.6 67.71 65.38 

0.1 67.7 67.72 67.53 

0.5 65.8 69.77 67.68 

0.9 0.01 67.44 67.72 65.65 

0.1 67.55 67.81 63 

0.5 67.57 65.3 63.47 

 

The result in the table 3 indicated that the fitness score can be achieved by implementing GA using a cross rate of 0.8, a 

mutation of 0.5 and 4 generations.  

 



3   Results and Discussion 

3.1   Hypothesis 1: BMR can improve the accuracy of the model 

Once the optimal hyper parameters of neural network and BDR were determined. The effectiveness of BMR on the neural 

network performance was examined. The study was carried out on three oil well datasets. The hyper- parameters used in 

the study is summarized in Table 4 and the test confusion matrix were plotted in Table 5, 6, 7 respectively in for each oil 

well.  

Table 4. Parameters used in the neural network training 

 

Parameters  Parameters  

Input size 10 Learning rate 0.01 

hidden size 30 Validation split ratio 0.9 

Number of classes 3 BMR constant ∝ 0.8 

Number of epochs 300 BMR variance range 0.1 < 𝜐 < 0.6 

Batch size 10   

 

Table 5. Confusion matrix for the test results on oil well dataset 1 

 

Confusion matrix Neural network without BMR Neural network with BMR 

Rock Quality Frac Good OK Frac Good OK 

Frac 14 0 1 14 0 1 

Good 0 7 8 2 5 7 

OK 1 5 14 1 5 14 

Test accuracy 70% 66% 

 

Table 6. Confusion matrix for the test results on oil well dataset 2 

 

Confusion matrix Neural network without BMR Neural network with BMR 

Rock Quality Frac Good OK Frac Good OK 

Frac 10 1 4 10 2 3 

Good 0 30 5 0 28 7 

OK 2 12 11 2 12 11 

Test accuracy 68% 65% 

 

Table 7. Confusion matrix for the test results on oil well dataset 3 

 

Confusion matrix Neural network without BMR Neural network with BMR 

Rock Quality Frac Good OK Frac Good OK 

Frac 6 0 2 6 0 2 

Good 2 9 20 2 11 18 

OK 0 16 30 0 18 28 

Test accuracy 54% 53% 

 

From Table 5, 6 and 7, we can notice that our trained classifier’s performance varies on the rock samples in different oil 

wells. In oil well 1, the classifier had achieved relatively good accuracy in classifying test samples with OK and Frac 

qualities but achieved relatively low accuracy in classifying test samples with Good qualities. In oil well 2, the classifier 

had achieved relatively good accuracy in classifying test samples with Frac and Good qualities but achieved relatively 

low accuracy in classifying test samples with OK qualities. In oil well 3, the classifier had achieved relatively good 

accuracy in classifying test samples with Frac qualities but achieved relatively low accuracy in classifying test samples 

with Good and OK qualities. This may be explained as a result from variance in the training data. As the availability of 

the training data was very limited, outliers can exist in the training dataset and the training set may not represent all the 

features from all rock samples but only from the samples that are accounted to generate the dataset.  

 

Compare the results between the network performance after the trainings with and without BMR, we can notice that 

implementation of BMR had negatively impact the accuracy of the trained model. This phenomenon may be explained 

by the fact that the samples removed by the BMR from the training set are not the outliers and contain important features 

that the neural network should learn to improve its accuracy.  

 



3.2   Compare the result with Fuzzy Clustering Classification 

Table 8. Comparing the result with Fuzzy Clustering Classification (FCC) 

 

Oil well FCC without BDR BDR 

1 70% 70% 66% 

2 75% 68% 65% 

3 60% 54% 53% 

Compare the results between the network performance with Fuzzy Clustering Classification (FCC) [8], we can notice that 

performance of FCC is better than our results in all wells 

3.3   Hypothesis 2: feature selection by GA can improve training time but reduce testing accuracy 

The idea of genetic algorithm is to select a subset of important features from all the features in the dataset, it is not hard 

to imagine that using less features for training will lead to a decrease of training time. However, the saving of training 

time comes at a cost of model testing accuracy due to loss of information. To test how well the GA can balance this trade 

off, we measured the test accuracy and training time of genetic sequences that produced by GA while training the oil well 

data. The training time is time for the neural network to reach an average error of 0.75. The results are summarized in 

Table 9.    

 

Table 9. Confusion matrix for the test results on oil well dataset 3 

 

Case  Genetic sequence Test accuracy Training time (seconds) 

1 [1,1,1,1,1,1,1,1,1,1] 68% 1.64 

2 [0,1,1,1,1,1,1,1,1,1] 70% 1.62 

3 [1 1 0 1 1 1 1 1 1 1] 68% 1.71 

4 [1 0 1 1 1 1 1 1 1 1] 70% 1.6 

5 [0 1 1 0 1 1 1 1 1 1] 74.0% 2.66 

 

The Table 8 indicated that reducing features did not necessarily guarantee a reduction in training time. In fact, in case 3 

and 5, it increased the training time. This can be explained as neural network become harder to converge due to missing 

important features. But in case 4, missing feature 2 indeed decrease the training time, which means feature 2 was not an 

important feature for training and therefore was redundant.  On the other hand, in case 2, 4 and 5, the testing accuracy 

was higher than case 1, which indicated reducing features did not necessarily guarantee a reduction in testing accuracy. 

However, this may be due to fluctuation in the testing accuracy caused by the random shuffles of dataset at beginning of 

each training 

4   Conclusion and Future work 

The performance of the trained neural network model is depended on the quality and availability of training data. With 

unlimited supply of data, the neural network can theatrically outperform any other parametric estimators. However, in the 

real-world problems, the availability of dataset is limited. Parametric methods should be used to introduce bias to improve 

the variance and bias trade off. The outlier removal method (BMR) introduced in this paper has the potential to remove 

the outliers in the training data. It also has the potential to address the limitations in other outlier removal methods such 

as ACM, LMS, LTS.  

 

Given the factor that the outcomes of the implantation of BMR in this paper has not yield the expected increase in the 

performance of the neural networks. Some future work is suggested to refine the approach. This first suggestion would 

be to treat the problem as a regression problem. The rock quality in the training data may contain relationships. For 

example, we can set the value for frac quality as 0 and set the value for ok as 2. This may correct the way that BMR 

performs. The second suggestion would be to collect more training data from the same wells. The training data used in 

this paper is very limited (less than 150 samples per well). This has resulted in large fluctuations in accuracy after 

trainings. The fluctuation could have offset the effect of BMR.    

 

The genetic algorithm (GA) is an effective tool to for features selection. Our experiment shown that adequate feature 

selections could lead to a reduction in the training time while not compromise too much on the model accuracy, while an 

inadequate one would lead to longer training time and lower model accuracy.  
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