
Investigating Differences in Two Visualizations from Observer’s Pupil
Diameter Using Bidirectional Neural Network and LSTM

Wenxuan Zhou

Research School of Computer Science
The Australian National University

Email: u6545178@anu.edu.au

Abstract. In this investigation, two visualization interfaces with similar quality are differentiated by observers’ eye
gaze fixations and saccades data. Besides a traditional artificial neural network, a Bidirectional Neural Network is
implemented to give the network new abilities to design powerful data representation techniques, which can become
a key factor in reducing network generalization error. Comparing two results, it can be summarized that BDNN does
not have a significant improvement on the performance of classification, while time series data can provide more
information than statistics measurements.

Keywords: Visualization Interface, Neural Network Classifier, Bidirectional Autoencoder, Long Short-term
Memory

1 Introduction

Visualization can provide high levels of interaction to observers to glean knowledge from the raw data, and enable
learners to draw valuable conclusions at minimal cost, describe big data in simple and innovative ways, combine data in
diagrams that represent information and convey messages to observers by creating mental visual images. With a
visualization interface, users can navigate information spaces and abstract away from the inherent complexity of the
underlying information [1].

Several studies support that images and graphs can capture the immediate attention of observers compared to texts.
When two visualizations are similar in quality, it could be hard to differentiate one from another [1].

In this setting, I would like to classify two different interfaces (radial and hierarchical) from observers’ pupil
diameter figure. A radial visualization is used when there is a single entity of major interest, and the hierarchical
visualization is structural to show the key interconnections between hierarchies [1]. Hence this is a binary classification
problem.

An eye-tracker keeps recording the pupil diameter size per 1/60th second throughout subject’s whole experiment.
These data are stored with left eye and right eye separately. All figures are further summarized its statistics
measurement distributed by participant and question.

Among classification models, logistic regression and artificial neural network models are widely used. This seems to
be motivated by their lower generalization error than decision trees and k-nearest neighbors, while being easier to build
than support vector machines. Meanwhile, due to the fact that artificial neural network can be seen as nonlinear
generalizations of logistic regression, it is chosen for this task [3].

Now since the pupil data is recorded as time series, a recurrent network will be well-suited for such kind of data that
possess moving average components [4], given that it can retain a state representing information from an arbitrarily
long context window. Unlike the standard recurrent network that suffers from vanishing and exploding gradient
problems, LSTM uses special units that include a 'memory cell' to allow for a better control over the gradient flow and
enable better preservation of “long-range dependencies” [5].

The extraction of meaning from trained neural networks is seen as a way to improve the acceptability of neural
networks. Most methods of rule extraction use causal connections between inputs and outputs. There is some statistical
indication that the outputs have causal effects on inputs. Thus, if we were to explicitly allow connections embedded in
the network to be made between the output and input values as well as the usual input to output connections, it is
possible that more accurate rules could be extracted [2]. Thus, a bidirectional neural network is designed to remember
input patterns as well as output vectors, given either of them.

In this investigation, a simple neural network is first implemented as the classifier model of the problem. Then a
bidirectional LSTM neural network is trained as autoencoder, whose encoding data is preserved for further
classification. While time-series data is classified using an LSTM autoencoder. For all models, K-fold cross-validation
is used for evaluation, which provides reliable results for model selection and hyperparameter tuning, as well as result
comparison.

2 Methods

2.1 Data Preprocessing

In the experiment, both two interfaces (radial and hierarchical) have six questions based on the information presented,
and 24 participants have all answered the 12 questions, thus there are 288 samples of pupil data in total. The string
value of target class “Radial” and “Hierarchical” is encoded into numerical representation 0 and 1 respectively.

For the simple neural network, there are seven statistics measurements of the pupil diameter for each participant’s

every question: Mean, standard derivation, maximum value, minimum value, range, first derivative and second
derivative.

Because the maximum and minimum have already given the range, thus range attribute is deleted.
A time derivative is a derivative of a function with respect to time, usually interpreted as the rate of change of the

value of the function. It seems that in the classification domain there could be objects for which function value
comparison is not sufficient. There could be cases where assignment to one of the classes depends on the general shape
of objects rather than on strict function value comparison. Especially for time series, it seems that some variability in
the “time” domain could have a great influence on the classification process [6].

Given the range of data is varied and skewed, z-score normalization is used to rescale all data into 0 and 1 without
distorting differences in the ranges, otherwise the large value may have more influence to result.

For the original pupil diameter data, only the left pupil size and right pupil size is preserved as features, since the

participant's identity and the question being answered does not matter with the differences of interfaces.
After dropping off all none values and the row with at least one zero-value in the dataset (i.e. only keeping the time

step where both two eyes are open), the length of each sample varies, with the longest of 2716 (subject: P52F, question:
Q3) and the shortest of 1 (subject: P48F, question: Q5). There are even situations that 9 sample has meaningful records
at all.

To balance the influence of each sample, those with nothing or too few data are abandoned, and for the remain 275
samples only the first 400 records are taken to train.

2.2 Simple Neural Network

Given the available features are only three attributes and the dataset of 288 samples, the neural network is not necessary
to be large. A one-hidden-layer network is quite adequate for the job.

Fig. 1. The pseudo structure of the simple neural network

Picture 1 is the schematics of this simple neural network. Patterns are fed in through input layer where one node for
each component. Then hidden layer receives the value connected with weights and bias and an activation function
determines whether to be activated or not. Finally, the calculation is passed to output layer with one neuron for each
possible desired output. Each connection is combined with weight and each neuron (except input one) has a bias. These
values are the parameters trained and updated by gradient descent [7].

Given the input is normalized, tanh activation function is used in the hidden layer that maps the negative inputs
strongly negative, and the zero inputs will be mapped near zero in the graph [8]. While the output value is expected to

be in the range of (0,1) as the probability of belonging to a class, Thus, sigmoid or logistic activation function is the
most appropriate here.

Given this is a binary classification problem, where output is more like predicting the probability of the example
belonging to class value 1, the cross-entropy loss is used here. It is the preferred loss function under the inference
framework of maximum likelihood. Cross-entropy will calculate a score that summarizes the average difference
between the actual and predicted probability distributions for predicting class 1. The score is minimized and a perfect
cross-entropy value is 0 [9].

For the gradient descent, mini-batch algorithm is used, which splits the training dataset into small batches that are
used to calculate model error and update model coefficients. Compared to other batch gradient descent that updates
model at the end of each training epoch, mini-batch has higher model update frequency, allowing for a more robust
convergence and avoiding local minima. Also, the batched updates provide a computationally more efficient process
than stochastic gradient descent [10].

To determine the hyperparameters (learning rate, batch size, epoch size and number of hidden units), K-fold cross-
validation is used to evaluate the model. In each round of k times iteration, the dataset is split into k parts: one part is
used for validation, and the remaining k-1 parts are merged into a training subset for model evaluation, thus reducing
the pessimistic bias by using more training data in contrast to setting aside a relatively large portion of the dataset as test
data. The cross-validation performance is computed as the arithmetic mean over the k performance estimates from the
validation sets [11]. Given the dataset has only 288 samples, K is set to 5. Table 2 shows the average result for different
hyperparameter configuration.

Table 1. The average accuracy of simple neural network model with different hyperparameter configuration (~ indicates that the
accuracy is below 50%)

 Hidden size Epoch number Batch size Learning rate Average accuracy (%)
1 24 700 30 0.001 50.8213
2 24 800 30 0.001 52.6598
3 24 900 30 0.001 51.3642
4 32 700 30 0.001 51.7564
5 32 800 25 0.001 50.2026
6 32 800 30 0.01 ~
7 32 800 30 0.001 53.4722
8 32 800 30 0.0001 ~
9 32 800 35 0.001 52.9927
10 32 900 30 0.001 50.2563
11 48 800 30 0.001 ~
12 48 900 30 0.001 52.4299
13 48 1000 30 0.001 ~

As can be seen from line {6,7,8} in table 1, no matter what batch size or epoch number is, the model with learning

rate of 0.001 always has the best average accuracy.
Comparing line {5,7,9}, with same network structure, training epochs and learning rate, the best performance

appears when the batch size is of 30.
Given the fact that a bigger neural network (i.e. more neurons in hidden layer) will need more training epochs to

converge, hidden size and epoch number are compared together. Fixed on batch size and learning rate confirmed
previously, lines {1,2,3,4,7,10,11,12,13} list several optimal combinations. A bigger neural network usually needs more
time to update the parameters, changing the model from underfitting to optimal. Meanwhile, more training epochs does
not necessarily mean a better result, but may lead to overfitting.

It is obvious that the best score lies in line 7, whose hyperparameter setting is the result of hyperparameter
optimization.

2.3 Bidirectional Neural Network

Bidirectional Neural Networks (BDNNs) is designed based on multi-layer perceptrons trained by a generalized form of
the error back-propagation algorithm [2]. It is actually an autoencoder and can be trained as a context addressable
memory or a cluster center finder, given different relation between input and output.

The model for BDNN is also implemented as a one-hidden-layer network, due to the limitation of dataset size. Thus,
the single hidden layer can be considered as encoding layer whose result is the encoded input. Because of the property
of autoencoder, the size of input and output is the same.

An autoencoder can have two kinds of structure: undercomplete and overcomplete. In undercomplete network, a
compact representation is produced in encoding layer, i.e. hidden layer has fewer units than the input. In this case, the
dimension is reduced [12]. While for an overcomplete network, the number of units in hidden layer is bigger than the
input layer. From the experiment of my previous research, representing raw data into more features cannot improve
classification accuracy. Therefore, only undercomplete BDNN will be implemented.

Given the input is still normalized to have the same range, the activation function should have meaningful output for
both positive and negative inputs. Hyperbolic tangent is similar to sigmoid with the difference that is symmetric to the

origin and its slope is steeper [12]. For the loss function, a MSELoss is adequate, which computes the mean squared
error between input and reconstruction information for optimizer to minimize the difference.

Fig. 2. The pseudo structure of autoencoder, with weight and bias indication in forward training

 Fig. 3. The pseudo structure of autoencoder, with weight and bias indication in backward training

A bidirectional neural network means that the model will be trained in both forward and backward directions. As
illustrated in graph 2, when training this two-layer network in the normal direction, there will be four learnable
parameters assigned as model attributes: weight between input and hidden layer (W_input_hidden), biases of hidden
layer (Bias_hidden), weight between hidden and output layer (W_hidden_output) and biases of output layer
(Bias_output). Then when training in the reverse direction, demonstrated in graph 3, same weights will be used, as well
as the biases in hidden units. However, given the model weight in Pytorch library has its specific shape, a transpose
processing will be needed.

The model will be initialized with random parameter given. For the first iteration, the network is trained normally in
the forward direction. Then, the direction of training is reversed, where a new model will be built based on the
parameters passed from the previous iteration. The direction is maintained until some maximum number of epochs have
been spent in the current direction, or the overall error in the current direction is less than the error tolerance predefined
before training. This sequence of reversals of training direction continues until reaching a specified iteration number.

Same as the simple neural network introduced previously, the model is evaluated through K-fold cross-validation
procedure. Table 2 shows the average loss for model with different hyperparameter configuration.

Table 2. The average loss of bidirectional neural network model with different hyperparameter configuration

 Hidden size Iteration number Epoch number Batch size Loss threshold Average loss
1 3 50 100 30 0.001 0.1019
2 3 50 100 10 0.001 0.0613
3 3 100 100 30 0.001 0.0960
4 3 100 100 10 0.001 0.0333
5 3 200 100 30 0.001 0.0871
6 3 200 100 20 0.001 0.0814
7 3 200 100 10 0.001 0.0602
8 3 300 100 10 0.001 0.0799
9 2 50 100 10 0.001 0.0608
10 2 100 100 10 0.001 0.0627
11 2 200 100 10 0.001 0.0571

Comparing lines {1,2}, {3,4} and {5,6,7}, a smaller batch size will always lead to a lower average loss. An

autoencoder with bigger hidden layer also needs more training epochs to converge, so hidden size and iteration number
are taken into consideration together. Lines {2,4,7,8} and {9,10,11} list several combinations. The reason why loss
threshold and epoch number remain unchanged during hyperparameter tuning will be discussed in the result section.
The best score lies in line 4.

Now a dataset of encoding values can be produced, which will further be fed into simple neural network for
classification, with different hyperparameter configuration. Here the detail of model section and hyperparameter tuning
is omitted. The final result is:

For dataset from undercomplete structure BDNN (feature dimension: 3). Using simple neural network with hidden size
of 12, epochs of 800, batch size of 30 and learning rate of 0.001, the average result 53.7160%.

2.4 Long Short-term Memory Autoencoder

Standard neural networks have limitations in that they rely on the assumption of independence among the training and
test examples. After each example (data point) is processed, the entire state of the network is lost. If each example is
generated independently, this presents no problem. But if data points are related in time or space, this is unacceptable
[13].

Recurrent neural network (RNN) is a connectionist model with the ability to selectively pass information across
sequence steps, while processing sequential data one element at a time. Thus, they can model input and/or output
consisting of sequences of elements that are not independent [13]. Long Short-Term Memory network (LSTM) is a
special kind of RNN, capable of learning long-term dependencies [14]. A typical LSTM network is comprised of
different memory blocks called cells. There are two states that are being transferred to the next cell; the cell state and
the hidden state. The memory blocks are responsible for remembering things and manipulations to this memory are
done through three major mechanisms: forget gate, input gate and output gate. The information flows through the cell
states, so that LSTM can selectively remember or forget things [15].

Fig. 4. The pseudo structure of LSTM [18]

For the implementation of LSTM autoencoder, I first tried with two LSTMs only (the Pytorch structure is illustrated
below), one as encoder and one as decoder. However, this model cannot converge at all, no matter what changes to the
functions or hyperparameters have been made.
LSTMautoencoder(
 (encoder): LSTM(2, 32, batch_first=True)
 (decoder): LSTM(32, 2, batch_first=True)
)

Then a fully-connected layer to added at the end (the Pytorch structure is illustrated below) to transpose the output

into the same shape as input, so that the hidden size of LSTM itself does not need to match the dimension. And it turns
out that the performance is up to expectation.
LSTMautoencoder(
 (encoder): LSTM(2, 32, batch_first=True)
 (decoder): LSTM(32, 16, batch_first=True)
 (output_layer): Linear(in_features=16, out_features=2, bias=True)
)

Now given this structure, bidirectional training is no longer possible. In Pytorch library, LSTM module has four

learnable variables: the input-hidden weights of the kth layer, the hidden-hidden weights of the kth layer, the input-
hidden bias of the kth layer and the hidden-hidden bias of the kth layer, each having the shape of (4*hidden_size,
hidden_size) for weights and (4*hidden_size) for biases. Because of this, when trying to training the model backwardly
(i.e. feed the data in a reversed direction), no weights or biases of encoder and decoder can match by shape. Figure 5
demonstrates the actual variables of the model.

Fig. 5. The variables of model when training in the forward direction (above) and backward direction (below)

Another critical issue for LSTM is the outputs. A Pytorch LSTM has three output components: output (the output
features h_t from the last layer for each time step), h_n (the hidden state for time step equals to sequence length), and
c_n (the cell state for each element in the batch). To be specific, the output comprises all hidden states in the last depth
layer, while h_n and c_n comprise the hidden states after the last timestep [18-16], which can be intuitively seen from
figure 3. In order to keep all information through batches, the output of encoder is further fed to the decoder, while the
hidden state is used for classification, which can be seen as the intermediate representation of sample. Also, the decoder
passes its output to the fully-connected layer.

In summary, time-series data are imported into the autoencoder, and its output is transposed into decoding data using
a linear layer. While another linear layer takes the hidden state of encoder as input to make classification on interfaces.
An MSELoss is used as the criterion of autoencoder performance. The actual Pytorch model is illustrated below:

LSTMautoencoder(
 (encoder): LSTM(2, 32, batch_first=True)
 (decoder): LSTM(32, 16, batch_first=True)
 (output_layer): Linear(in_features=16, out_features=2, bias=True)
 (classify_layer): Linear(in_features=32, out_features=2, bias=True)
)

Same as before, the whole model is evaluated through K-fold cross-validation procedure by the classification

accuracy, not the loss of autoencoder. Table 3 shows the average accuracy with different hyperparameter configuration.

Table 3. The average accuracy of LSTM autoencoder with different hyperparameter configuration (~ indicates that the accuracy is
below 50%)

 Hidden size Epoch number Sequence length Learning rate Average accuracy (%)
1 48 30 100 0.01 50.0174
2 48 20 100 0.01 51.2903
3 48 10 100 0.01 ~
4 32 5 100 0.01 ~
5 32 10 100 0.1 ~
6 32 10 100 0.01 56.0192
7 32 10 100 0.001 52.3763
8 32 10 80 0.01 ~
9 32 10 200 0.01 51.2908
10 32 20 100 0.01 ~
11 16 20 100 0.01 ~
12 16 10 100 0.01 54.9233
13 16 5 100 0.01 ~
14 8 10 100 0.01 ~

As can be seen from lines {5,6,7}, the model has the best average accuracy with learning rate of 0.01. Given each

sample provides first 400 records and the customized dataset is designed to give model sample by sample, the sequence
length can only be chosen from the divisor of 400, due to the fact that batch size and sequence size in LSTM module
must have same product. Large batches always mean faster training time, while small batches with many timesteps can
have better generalization and accuracy [18].

In lines {5,8,9}, sequence length of 80, 100 and 200 are attempted with same hidden size, epoch number of learning
rate.

Again, fixed on batch size and learning rate confirmed previously, hidden size and epoch number are compared
together. Lines {1,2,3,4,7,10,11,12,13} list several optimal combinations. This time the best score lies in line 7, whose
hyperparameter setting is the result of hyperparameter optimization.

3 Result and Discussion

3.1 Result of Simple Neural Network and Bidirectional Neural Network

From table 1, the best accuracy can be archived by simple neural network is around 53%. On the other hand, the
encoding data from BDNN seems to improve the classification accuracy (i.e. from 53.4722% to 53.7160%).
Figure 6 is the five confusion matrices for 5-fold cross-validation using that best model. Viewing all tables, there is no
clear difference between radial interface and hierarchical interface in the classification performance.

Fig. 6. The confusion matrixes for 5-fold cross-validation using simple neural network

As talked in method section, both loss threshold and epoch number remain unchanged during hyperparameter tuning.
This is because the total loss during whole training process never decreases to be lower than 0.5 and keeps chopping till
the end. Therefore, the actual training times equal to iteration number * epoch number, thus there is no need to change
epoch number parameter as well.

It is worth mentioning that even though the K-fold cross-validation is used to confirm the accuracy of model
evaluation, the actual predicting performance is still not stable, which may be caused by the initialization of model
parameters. However, it is apparently showed in the figure 6 that difference among training-testing dataset can lead to
huge deviation. This implies that the original dataset is not balanced and may have some outliers that heavily influence
the prediction.

3.2 Result of Long Short-term Memory Autoencoder

From table 3, The best accuracy obtained by LSTM autoencoder is around 56%. It is intuitively that many
hyperparameter configurations will lead to absolute wrong model. This implies that the classification of time-series data
can have many undetermined uncertainties.

Another notable thing occurs in the training. Given this is an autoencoder model, besides the classification accuracy
of encoder’s hidden states, the loss between input and decoder’s output is also a criterion measurement. However, when
the loss keeps decreasing, the classify becomes overfitting.

3.3 Compare Results

Given three different classification results regarding to pupil diameter, a comparation can be conducted. Unexpectedly,
none of these models have a satisfactory outcome. Even though the result is better than random guess (i.e. accuracy of
50% for a binary classification), it is still not high enough to be considered as a good model. While among them, LSTM
autoencoder has the best accuracy.

This observation implies that representing raw data into fewer features can be considered as a data preprocessing that
tackles the problem inside the dataset, such as data unbalance, large outliers, etc. Therefore, the input becomes more
evidential to distinguish two visualization interfaces. Statistics measurement summarizes the data into a smaller
dimension, with the cost of losing the persistent information in long time-series records.

4 Conclusion and Future Work

In conclusion, the introduction of bidirectional autoencoder does improve the prediction accuracy, but the progress is
not too much. On the other hand, time-series data has its meaning that cannot be replaced by any statistic.

The time-series data for LSTM are preprocessed so that only the records with two eyes open are preserved. This is
due to the fact that the raw data have many wield situations such as only one pupil open for a while, or there are no
available figures in one sample, whereas it also means that all eye blink periods are deleted from samples, which can an
important factor in classifying two interfaces. Therefore, a better and smarter data preprocessing method should be
applied.

In addition, only first 400 rows of each sample are taken as training dataset. With the worries that varied data amount
may lead to unbalanced impact to the result, this rash cut off can also result in a loss of information, which could make
contribution to the poor performance of overall classification.

During the whole evaluation process, all hyperparameter configurations are fixed for each iteration of K-fold cross
validation. Further I would like to change some of these values during training. For example, the learning rate can be set
to a small value at the beginning then increase later. Same is in BDNN training where learning rate and loss threshold
keeps unchanged in both directions. The use of dynamic coefficients may result in faster convergence of the network.

When training the LSTM autoencoder, there are indeed many questions concerned with the design of structure. For
example, why adding a linear layer at the end makes the model starts to converge? Is that possible with larger layer size
in encoder and smaller layer size in decoder? Another experiment can be made based on these concerns.

References

[1] M.Z. Hossain, T. Gedeon, S. Caldwell, L. Copeland, R. Jones, and C. Chow. 2018. Investigating Differences in Two
Visualisations from Observer’s Fixations and Saccades. In Proceedings of Australasian Computer Science Week
conference, Brisbane, QLD, Australia, 30 January – 2 February 2018 (ACSW’2018), 4 pages
[2] Nejad, A. F., & Gedeon, T. D. (1995, November). Bidirectional neural networks and class prototypes. In Neural
Networks, 1995. Proceedings., IEEE International Conference on (Vol. 3, pp. 1322-1327). IEEE.
[3] Stephan Dreiseitl, and Lucila Ohno-Machado: Logistic regression and artificial neural network classification models:
a methodology review, In Journal of Biomedical Informatics 35 (2002) 352–359
[4] Jerome T. Connor, R. Douglas Martin: Recurrent Neural Networks and Robust Time Series Prediction, IEEE
TRANSACTIONS ON NEURAL NETWORKS, VOL. 5, NO. 2, MARCH 1994
[5] Difference between feedback RNN and LSTM/GRU, URL (version: 2016-07-07):
https://stats.stackexchange.com/q/222587
[6] Tomasz Górecki & Maciej Łuczak (2014) First and Second Derivatives in Time Series Classification Using
DTW, Communications in Statistics - Simulation and Computation, 43:9, 2081-2092, DOI:
10.1080/03610918.2013.775296
[7] Understanding Neural Networks: What, How and Why?, https://towardsdatascience.com/understanding-neural-
networks-what-how-and-why-18ec703ebd31
[8] Sagar Sharma: Activation Functions in Neural Networks, https://towardsdatascience.com/activation-functions-
neural-networks-1cbd9f8d91d6
[9] How to Choose Loss Functions When Training Deep Learning Neural Networks,
https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/
[10] A Gentle Introduction to Mini-Batch Gradient Descent and How to Configure Batch Size,
https://machinelearningmastery.com/gentle-introduction-mini-batch-gradient-descent-configure-batch-size/
[11] Sebastian Raschka: Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning,
arXiv:1811.12808, 2018
[12] Practical tutorial on autoencoders for nonlinear feature fusion (Part 1),
https://kstathou.github.io/posts/2018/03/autoencoders-part-1/
[13] Zachary C. Lipton, John Berkowitz, Charles Elkan: A Critical Review of Recurrent Neural Networks for Sequence
Learning, arXiv:1506.00019v4 [cs.LG] 17 Oct 2015
[14] Understanding LSTM Networks, http://colah.github.io/posts/2015-08-Understanding-LSTMs/
[15] Pranjal Srivastava: Essentials of Deep Learning : Introduction to Long Short Term Memory,
https://www.analyticsvidhya.com/blog/2017/12/fundamentals-of-deep-learning-introduction-to-lstm/
[16] nnnmmm: What's the difference between “hidden” and “output” in PyTorch LSTM?,
https://stackoverflow.com/questions/48302810/whats-the-difference-between-hidden-and-output-in-pytorch-lstm

