
Emotion Detection through Static Images using Convolutional Neural

Networks

Jihirshu Narayan,1

1 The Australian National University, Canberra ACT 0200, Australia

jihirshu.narayan@anu.edu.au

Abstract. Image classification is perhaps one of the most widely implemented application of Neural Networks in

industry today and Convolutional Neural Network is perhaps the most effective tool for the same. However, the most

basic requirement of a such a deep neural network is a massive dataset. We aimed to demonstrate that CNNs can

produce reasonable multi label image classification results even when the model is trained on a dataset of modest size.

Additionally, we aimed to demonstrate the effects of neuron pruning on a deep neural network. It was observed that

neuron pruning based on output vector in the pattern space is an effective method of building lighter neural networks

without compromising on the model performance.

Keywords: Image Classification, Pruning, Emotion Detection, Deep Neural Network, Convolutional Neural Network

1 Introduction

Image processing is rapidly developing and being put to use on an unprecedented scale. Its applications are diverse in all

possible aspects, ranging from trivial tasks like recognizing individuals on social media to highly critical tasks such as

object recognition in autonomous driving. Deep Neural Network is one of the tools that has been immensely successful

in image classification. By principle, a neural network thrives on large databases and the rise of digital media has provided

the same.

Emotion detection is a very specific application of image processing. Due to the dynamic nature of facial expression, its

features are best extracted from videos. However, under certain circumstances, it becomes imperative that these features

are extracted from static images. This classification problem is quite advanced and complicated due to the fact that it has

multiple target classes and it’s difficult to generalize emotional expressions across individuals. It is therefore extremely

important that the training data is massive and equally diverse. For the purpose of this report we will be using the dataset

presented by Dhall et al. [3]. The database is a static facial expression database that comprises of unconstrained

expressions captured from various angles and at varying resolution. The images are diverse in terms of pose, spatial

orientation, subject age, etc. It is named as Static Facial Expressions in the Wild (SFEW) database [3].

Effective image classification requires an accurate and swift predictive model as well. The designed neural networks must

be large and robust enough to learn from massive datasets. As such, the networks themselves have multiple layers with

large number of neurons. There is no exact method to determine these hyper-parameters and network designers approach

the problem with their experience and instinct, sometimes leading to networks that are larger than required and therefore

perform sluggishly. Pruning is one of the most effective methods through which a neural network can be reduced in size

while maintaining its efficiency, resulting in a lighter and faster model [4]. In recent years, convolutional neural networks

have been more popular than any other learning model for image classification, especially in single label image

classification task [10]. If the provided database is large and diverse enough, CNNs can handle multiple labels efficiently

as well [1].

The classification model used for SFEW dataset by Dhall et al. [3] is based on a non-linear support vector machine which

achieved an averaged accuracy of 19% on the Strictly Person Independent dataset. We believe that similar results, if not

better, can be achieved with a neural network model. The classification problem was handled over two iterations, each of

which produced independent results. In the first iteration, we build a classification model based on a vanilla neural

network. In the second iteration, we approach the same problem with a deep convolutional neural network. We also

studied the effect of pruning, based on the concept of “Distinctiveness” [4], on both the models.

1

Student of Master of Computing at Australian National University

2 Dataset

The SFEW comprises of frames selected from AFEW (Acted Facial Expressions in the Wild). It contains a total of 700

images of multiple subjects that vary on various aspects such as resolution, angles and illumination [3]. The 700 samples

are labeled with 7 expressions; angry, disgust, fear, happy, sad, surprise and neutral. However, for the purpose of our

report 25 images with the ‘disgust’ label has been left out, leaving us with 675 data instances. This does not mean that

there is no sample with the ‘disgust’ label.

For our preliminary model, we did not use the images itself or even the images’ raw data but rather the first 5 principal

components each of Local Phase Quantization (LPQ) [8] and Pyramid of Histogram Oriented Gradients (PHOG) features

[2]. They are localized feature descriptor vectors that provide information regarding textures and shapes present in the

image. For the second model, based on CNN, we used the image data itself with a 720x576 pixel resolution. Both these

versions of the dataset were strictly person independent with a total of 95 subjects.

3 Methodology

The steps taken for building both the models were similar, broadly consisting of pre-processing, designing network model,

hyperparameter tuning and testing. However, the nature of dataset and task at hand determined the specifics in each of

those steps, which are discussed at length in the following sub-sections.

3.1 Dataset Pre-processing

Kotsiantis et al. [6] state that data pre-processing affects the generalizing performance of any supervised learning model

notably. It is therefore extremely important that we clean and process the data in such a way that it facilitates pattern

learning by the model. In terms of pre-processing, the kind of treatment that a dataset should receive varies from case to

case. A well-formed dataset captured with the intention of being used in a learning model may require minimal pre-

processing. But for most instances, datasets need to go through steps such as interpolation for missing values,

dimensionality reduction, feature encoding, scaling, etc. Since the dataset for our first model is already built upon principal

components, there was no need for dimensionality reduction. However, we did encounter missing values and irregular

scale across features. We filled the missing values with the mean of the corresponding feature and normalized the feature

values using z score evaluation.

The steps for data pre-processing for the CNN based model were more elaborate. Considering that the task focuses on

emotion detection, the first step was to detect faces in each image using a combination of multi-task cascaded

convolutional neural network and haar cascade classifier. Once the face was detected it was cropped out and resized to

48x48 pixels. The training dataset was also augmented for each epoch of training by random rotation, addition of noise

to brightness, contrast and saturation values, and randomly flipping the image across the horizontal axis. Such data

augmentation methods are necessary in order to expose the learning model to more variety, thus resulting in a more robust

classifier. It is especially relevant in our case because in terms of deep neural networks, a dataset of 675 samples is

considered quite small. For instance, a similar 7 label emotion detection classifier based on CNN, achieved an average

accuracy of 61% while working on a dataset comprising of 37,000 images provided by Kaggle website [1].

3.2 Neural Network

For our first model, we used a basic feedforward neural network with a single hidden layer of neurons. The output layer

had 7 neurons, one each for the target labels, representing the probability that it belongs to a particular label. After testing

the performance of various hidden layer activation functions such as Relu, Tanh and Sigmoid, it was observed that the

Sigmoid function provided the most robust performance across parameters. Additional hidden layers were tested as well

but they did not enhance network performance at all while significantly increasing training time. Similarly, various loss

functions and optimizers were implemented and tested. The cross-entropy loss function along with Adam optimizer

performed the best across a wide range of parameters. We employed the mini-batch gradient descent for the purpose of

weight optimization.

While dealing with the complete dataset, we decided to base our model on a convolutional neural network. Local

descriptor-based feature sets, such as PHOG, SIFT, LPQ, etc. have been traditionally employed for the purpose of image

recognition. However, in recent years, the popularity of these models has been overshadowed by the emergence of

convolutional neural networks (CNN). CNNs are hierarchical structures that extract features through layers and thus

produce better generalization [11]. This aspect of learning through CNN is extremely relevant for image recognition

because there is high variance in features even in the same target class, thus making the nature of image recognition much

more abstract when compared to other forms of data-based learning.

Our CNN model consists of 6 convolution module and each one of them further consists of a convolution layer, batch

normalization layer and Relu activation. The first five layers are summarized through max pool method while the last

layer uses an adaptive average pooling method. The output size of the first 5 layers gradually increases from 16 to 256

and the last layer condenses the information to 7 output neurons, one for each target label.

3.3 Testing

For our preliminary model, instead of opting for the test set method where we split the initial dataset into training and test

set, we went with k-fold cross validation. We also kept 10% of the initial dataset for the purpose of validation. This

allowed us to select the most robust and stable model parameters. Since the dataset has limited number of samples, a

higher fold cross-validation resulted in very small training folds and therefore 3-fold cross-validation was selected. The

use of k fold cross validation added an extra layer of testing which led to the selection of a more robust model.

For our final CNN based model, we split the original dataset into 3 sets. 80% of the original data was kept for training

while the remaining 20% was split into test and validation sets. The test set was used to keep track of the accuracy through

each epoch of training and the validation set was used as a final hurdle to evaluate the model. In order to get consistent

testing values for model evaluation the random seed was kept as ‘0’ through all the iterations.

3.4 Pruning

When constructing a neural network, the designer has no empirical method to determine the correct size of the network.

It completely depends on the dataset and the pattern that resides within it. Data visualization and exploration may provide

some sense regarding it, but ultimately it comes down to logical guess work, instinct and experience. As such, it is not

uncommon for designers to create networks that are larger than required. Network pruning is a useful tool in such cases

as it helps to trim down the network to its lightest version without compromising on accuracy.

Network pruning methods have been developed on various levels such as pruning based on weights [5], filter pruning [7]

and neuron pruning [4]. We have used the neuron pruning method based on the concept of distinctiveness [4] for both of

our models. The degree of distinctiveness is measured by the angle between vectors formed by the neuron’s output

activation values formed in the pattern space [4]. In simpler words, it means that each neuron output value obtained by

an instance of sample data serves as a co-ordinate for the n-dimensional vector, where n is the total number of samples in

the data. Thus, we have a vector associated with each neuron and we determine the angle between all possible pairs of

neurons. In order to get values ranging from 0 to 180, the vectors are normalized in the range [-0.5, 0.5]. A close to 0

angle represents neurons providing similar functionality and an angle nearing 180 represents complimentary neurons. If

similar neurons are found, one of the neurons is neutralized and its weight is added to the other. If complementary neurons

are found, both are neutralized because they were cancelling out each other’s functionality anyway. The threshold for

pruning should be tuned like a hyperparameter and we will see the effects of a large threshold in the next section.

Once the angles for each pair of neuron vectors are calculated, we can start the process of neutralizing the redundant

neurons. It is important to keep track of the neurons that have been removed so that over the course of the entire process,

we do not end up removing both the neurons of a similar pair. It is also advisable to keep a back-up of the original weights

so that it can be referred when we need to add the weight of a neuron that has been already removed. After updating the

weights, the validation data is processed through the network and the model accuracy is calculated again. We use the

newly calculated model accuracy to compare how the pruning process has affected the model performance.

3.5 Hyperparameter Tuning

Hyperparameter Tuning is the most important step while optimizing any learning model. Pinto et al. [9] argue that image

classification performance can be improved better by finding the optimum hyperparameters rather than inventing new

learning techniques. In our case, the only parameters that needed to be optimized were learning rate, number of neurons

in the hidden layer, number of epochs and the batch size for mini-batch gradient descent. The tuning process was manual,

depending mostly on trial and error, aiming to increase the accuracy on the validation set and decreasing over-fitting. For

our preliminary model, out of all these parameters, learning rate was perhaps the most crucial one. The correct learning

was established after experimenting with a large number of values within the range of 0.00001 to 0.1. Since the pruning

technique being implemented for the first model was based on the angle between neuron output vectors in the pattern

space [4], the threshold angle for neuron removal was also treated as a hyperparameter. Contradictory to the 15o threshold

suggested [4], it was found that a threshold angle of 10o removed the optimal number of neurons so that the model

performance was not affected.

For our CNN based model, the number of epochs of training had the biggest impact on model accuracy. The reason for

this behavior lies in our method of data augmentation, which was discussed earlier. We do not augment the dataset to a

fixed size. Rather, we modify the dataset based on random parameters for each epoch of training. Therefore, from the

model’s perspective, a higher number of epochs of training means that it has more variety of data available at its disposal.

4 Results and Discussion

Dhall et al. [3] state that the baseline averaged accuracy for the Strictly Person Independent category was 19%. The results

were achieved with using one of the principal component feature set at a time classified by a non-linear support vector

machine. The low accuracy is attributed to the complex nature of problem and large number of target classes [3].

Our first model, based on a basic feed forward neural network, was able to enhance the accuracy of the classifier to

28.21%. With certain parameters, the accuracy remained the same even after pruning neurons in the hidden layer. A

complete summary of results with varying parameters is listed in Table 1. It can be observed that as the threshold angle

for pruning is increased, the accuracy of the model drops. This is because the increased threshold angle removes neurons

which were adding value to the model. Overall, the threshold angle of 10º and 170º removed the highest number of neurons

without compromising the accuracy of the model.

Table 1. Vanilla Neural Network Performance Analysis

Neurons in

Hidden

Layer

Epochs Learning

Rate

Threshold Angle

for Pruning

K Fold Average

Test Accuracy

Validation

Accuracy

Number of

Neurons Pruned

Validation

Accuracy

after Pruning

50 500 0.01 10, 170 22.61% 16.67% 0 16.67%

500 500 0.001 10, 170 28.3% 28.21% 5 28.21%

500 500 0.01 10, 170 26.29% 23.08% 23 23.08%

500 200 0.01 10, 170 26.29% 25.64% 45 25.64%

500 500 0.001 15, 165 28.3% 28.21% 32 26.92%

500 500 0.01 15, 165 26.29% 23.08% 69 21.79%

500 200 0.01 15, 165 26.29% 25.64% 88 24.36%

Our second model, based on Convolutional Neural Networks, performed significantly better than our first model, thus

confirming our hypothesis that CNNs are better suited for image classification tasks. The best performing model achieved

an accuracy of 49.09%. The pruning process was only applied to the last global averaging layer. It was observed that our

CNN based models were much more sensitive to pruning than our previous model. Even a threshold of 8o had observable

impact on accuracy. Unlike our vanilla model, we noticed that a lot of iterations showed a slight positive growth in

accuracy in spite of significant neuron pruning. This increase in accuracy might be an indication of overfitting in the

original model. Overall, we can safely claim that neuron pruning based on the concept of “Distinctiveness” [4] can be

effectively applied to even deep CNN based neural networks. A complete summary of results for this model is listed in

Table 2. The precision and recall score for each class is captured in Table 3. We can observe that score for the “Disgust”

class is significantly lower than the others. Upon close examination of the confusion matrix, we concluded that the model

is wrongly classifying images under the “Disgust” labels as “Angry” and “Sad”. This lower performance could also be

attributed to the fact that the dataset is missing 25 images from the “Disgust” class.

Table 2. Vanilla Neural Network Performance Analysis

Neurons in

Final Global

Average
Pooling Layer

Epochs Learning Rate Threshold Angle

for Pruning

Average Test

Accuracy

Validation

Accuracy

Number of

Neurons Pruned

Validation

Accuracy after

Pruning

256 10 0.001 8º, 172º 21.83% 21.82% 111 25.45%

256 10 0.0001 8º, 172º 26.05% 32.73% 7 34.55%

256 20 0.001 10º, 170º 26.83% 45.45% 148 43.64%

256 20 0.0001 10º, 170º 27.81% 41.82% 36 43.64%

256 40 0.0001 8º, 172º 30.11% 49.09% 16 43.64%

256 50 0.001 10º, 170º 33.74% 32.73% 191 36.36%

256 50 0.0001 10º, 170º 31.15% 40.00% 43 40.00%

Table 3. Precision Recall score for 40 epochs and 0.0001 learning rate

Label/Metric Angry Disgust Fear Happy Neutral Sad Surprise

Recall 0.625 0 0.5 0.77 0.5 0.71 0.2

Precision 0.33 0 0.57 0.875 0.4 0.83 0.33

5 Conclusion and Future Work

The demand for efficient image classification models is rising and it seems unlikely that it is going to decline in the near

future. Since there is a lot of scope for improvements as well, we can expect significant development in the coming years.

For instance, the concepts we have discussed in this paper need to be built upon for dynamic application such as image

classification in videos. Pruning techniques such as the one implemented in this paper will aid the development of models

with a shorter response time.

The model accuracy obtained in this report is significantly better than the one reported by Dhall et al. [3], especially

considering that the dataset is classified into 7 target labels. Despite the improved model accuracy, we believe that there

is a considerable scope of improvement in the prediction accuracy. The use of pre-trained models has proven immensely

successful in recent years [1]. These models are trained on a larger dataset and therefore they are able to extract and

generalize features better. The output of these models can then be connected to our own custom designed fully connected

layers which can be further trained on our own dataset, keeping the weights of the pre-trained model fixed. However, it

must be noted that such models would require more resources such as a GPU (Graphics Processing Unit) or Cloud TPU

(Tensor Processing Unit). It would also be interesting to explore neuron pruning in convolution layers based on the

concept of “Distinctiveness” [4] in a more comprehensive manner, unlike how we have limited our pruning to the last

layer. Moreover, there is scope for pruning entire convolution layers, which would result in a much lighter model. We

can expect that a filter level pruning technique would be highly successful in such a model [7]. Overall, we believe that

this paper would serve as a solid foundation for future work related to image classification on small datasets.

References

1. Alizadeh, S. and Fazel, A., 2017. Convolutional Neural Networks for Facial Expression Recognition, 1704.06756.

2. Dalal, N. and Triggs, B., 2005, June. Histograms of oriented gradients for human detection. In 2005 IEEE computer society

conference on computer vision and pattern recognition (CVPR'05) (Vol. 1, pp. 886-893). IEEE.

3. Dhall, A., Goecke, R., Lucey, S. and Gedeon, T., 2011, November. Static facial expression analysis in tough conditions: Data,

evaluation protocol and benchmark. In 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)

(pp. 2106-2112). IEEE.

4. Gedeon, T.D. and Harris, D., 1991. Network reduction techniques. In Proceedings International Conference on Neural Networks

Methodologies and Applications (Vol. 1, pp. 119-126).

5. Han, S., Pool, J., Tran, J. and Dally, W., 2015. Learning both weights and connections for efficient neural network. In Advances in

neural information processing systems (pp. 1135-1143).

6. Kotsiantis, S.B., Kanellopoulos, D. and Pintelas, P.E., 2006. Data preprocessing for supervised leaning. International Journal of

Computer Science, 1(2), pp.111-117.

7. Luo, J.H., Wu, J. and Lin, W., 2017. Thinet: A filter level pruning method for deep neural network compression. In Proceedings of

the IEEE international conference on computer vision (pp. 5058-5066).

8. Ojansivu, V. and Heikkilä, J., 2008, July. Blur insensitive texture classification using local phase quantization. In International

conference on image and signal processing (pp. 236-243). Springer, Berlin, Heidelberg.

9. Pinto, N., Doukhan, D., DiCarlo, J.J. and Cox, D.D., 2009. A high-throughput screening approach to discovering good forms of

biologically inspired visual representation. PLoS computational biology, 5(11).

10. Wei, Y., Xia, W., Lin, M., Huang, J., Ni, B., Dong, J., Zhao, Y. and Yan, S., 2015. HCP: A flexible CNN framework for multi-

label image classification. IEEE transactions on pattern analysis and machine intelligence, 38(9), pp.1901-1907.

11. Zheng, L., Yang, Y. and Tian, Q., 2017. SIFT meets CNN: A decade survey of instance retrieval. IEEE transactions on pattern

analysis and machine intelligence, 40(5), pp.1224-1244.

