
 

A Binary Classifier of an Eye-tracking Data Set: 

Implementation an Artificial Neural Network Classifier 

with Threshold Techniques and Genetic Algorithm 

 

 

Yukun, Hao 

Research School of Computer Science, Australian National University 

U6013736@anu.edu.au 

Abstract. Neural network is widely used for prediction task in modern computer science area, with 

more researchers are contributing to it. This paper will mainly focus on an implementation of an 

artificial neural network using Python/PyTorch on a real world eye-tracking dataset. A binary 

classification problem is issued and solved with an ANN classifier, and the performance will be 

evaluated. A threshold technique will then be applied on the classifier, to observe whether it is helpful 

for improving prediction accuracy. Also, a genetic algorithm for feature selection will be applied, to 

see if some features are not relevant to the classifier. 

Keywords: Artificial Neural Network, Eye-tracking, Pre-processing data, Threshold, Genetic 

Algorithm, Feature Selection 

 

 

1. Introduction 

 

This paper describes a neural network, which is designed to solve a classification problem with an eye-

tracking dataset (Kim, Thomas, Sankaranarayana, Gedeon & Yoon 2015). To achieve the dataset: 

http://cs.anu.edu.au/~tom/datasets/eyegaze-search1.zip. The dataset contains 29 columns of data, and 

details of each column is shown in figure 1-1. 

 

Id Attribute name Attribute value Id Attribute name Attribute value 

1 Subject Integer 16 Strictly Linear 0 / 1 

2 Size “L” / ”s” 17 Strictly Linear W/ID 0 / 1 

3 Task “info” / ”nav” 18 Regression rate 0 / 1 

4 Time to first click Decimal 19 Regression distance Integer 

5 Task completion duration Decimal 20 Regression to 1 or 2 0 / 1 

6 Accuracy 0 / 1 21 Skip 0 / 1 

7 Wrong answer 0 / 1 22 Skip distance:  Integer 

8 Mean fixation duration Decimal 23 Skip to 1 or 2 0 / 1 

9 Mean fixation duration for 

on link 

Decimal 24 ScanDown Integer 

http://cs.anu.edu.au/~tom/datasets/eyegaze-search1.zip


 

10 Minimal scanpath value Integer 25 ScanUp Integer 

11 Compressed scanpath value Integer 26 Maximum gaze position Integer 

12 Compressed/Minamal: Decimal 27 Strategy:  “DF” / “BF” / “MX” 

13 Complete 0 / 1 28 Trackback Integer 

14 Linear 0 / 1 29 Page visit Integer 

15 Linear W/ID 0 / 1    

Figure 1-1: Types of attributes in dataset 

 

I have chosen this dataset since it has enough data with varieties of attributes, which can provide enough 

information to the neural network model during training. Besides, there is no missing value in the dataset 

needed to be processed, and data are in high accuracy. Also, the eye-tracking problem is an interesting 

topic for me. 

The classification problem defined for the dataset is to predict if a data belongs to size “L” or “s”, so the 

attribute “Size” is used as label (output in the NN). There are 25 input attributes for the classifier, which 

is shown in figure 1-1, from attribute No.4 to attribute No.29, exclude attribute No.27.  

A neural network has been trained to solve the binary classification problem, with SGD optimiser, to 

observe the accuracy and confusion matrix of the NN. After that, a technique about changing threshold 

during making prediction is implemented on the NN after the observation, with new accuracy and 

confusion matrix comparing to the original NN to see if the threshold technique has improved the NN or 

not. 

 

 

2. Method 

 

2.1 Pre-processing of the Dataset 

The details of the eye-tracking dataset have been described in figure 1-1, with some attributes are non-

numerical, and some attributes are not considered as a part of the problem. Attributes “Task”, “Size” and 

“Strategy” can be regarded as label, and “Size” is selected as output, while “Task” and “Strategy” are 

deleted.  

There are 27 attributes remaining in the modified dataset, as described above, from attribute No.4 to 

attribute No.29, exclude attribute No.27 but with attribute No.1 (“Subject”). In addition, values in the 

label attribute “Size” are modified to make the dataset fit in with the NN technique, where label “L” is 

regarded as integer 1 and label “s” as 0. The modified dataset file is called 

“eyegaze_after_preprocess.csv”. 

The next step is using python code to do further pre-processing. Dataset are loaded and the attributes 

“Subject” is dropped, since it only describes which data belongs to which subject, acting as orders or 

data IDs and can give no meaningful information to the classifier. Attributes’ names are dropped, so only 



 

useful data are remaining for further training and testing process. Data are re-ordered randomly and 

splitted, with 80% of data are regarded as training dataset and the rest are for testing. The first column is 

used as output and the rest are input data. All input data being used for training process and testing 

process are normalized, from 0 to 1, to guarantee that all input features can contribute to the neural 

network model eaqually. 

 

2.2 Implementation of a Binary Artificial Neural Network Classifier: 

For the specific classification problem described in this paper, a neural network is trained using Python 

and PyTorch programing, with 3 layers includes an input layer, a hidden layer and an output layer with 

2 neurons. Overfitting is a widely considered problem when using neural network model, and models 

can be inaccurate if the parameters are not set well for a specific problem (Hawkins, 2004). Thus, to 

improve the performance of the neural network, numbers of hidden neurons and training epochs are 

important. Different values of hidden neurons and epochs are tested for 20 times, and the average 

accuracies for each pair of values are shown in figure 2-1, where column stands for epochs number and 

rows are hidden neurons number. 

From figure 2-1, it is figured out that overfitting can happens when the model is trained for too many 

epochs since the accuracy is decreasing. Also, as hidden neurons number increases, the training accuracy 

could be affected. So, to the specific problem defined in this paper, I have chosen the highest accuracy 

hidden neurons and epoch pair demonstrated above, which is: 20 hidden neurons and 500 epochs. 

To summarize, the parameters for the neural network is:  

Figure 2-2: Parameters setting for the neural network 

 

2.3 Performance Evaluation of the Neural Network Classifier: 

There are mainly two methods for evaluating the performance of the neural network described above. 

One method is the accuracy of the predicting results. However, the accuracy is calculated with testing 

dataset, but not training dataset, to prevent problems of overfitting. 20 percent of data are using for testing 

the accuracy of the NN model, to judge whether it is overfitting, or its generalization ability is good 

(Hidden, Epoch) 400 500 600 700 

15 64.63% 65.87% 65.39% 64.44% 

20 66.25% 67.12% 66.11% 64.89% 

25 63.13% 64.97% 66.49% 65.26% 

30 63.07% 65.10% 66.17% 64.89% 

Figure 2-1: Average accuracy of different setting for hidden neurons and epochs 

input_neurons = n_features; (n_features = 25 here) 

hidden_neurons = 20;            output_neurons = 2 

learning_rate = 0.005;         num_epochs = 500 

 



 

enough. The accuracy is calculated as figure 2-3 shows. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
true positive + true negative

number of all data
=

number of data being correctly predicted

number of all data
  

Figure 2-3: Formula for accuracy calculation 

 

The other method is confusion matrix, which is widely used to observe prediction results for 

classification problems (Lewis & Brown 2001). In this case, the confusion matrix is a 2 by 2 size matrix, 

with column means the predicting results and the rows for real labels. Figure 2-4 is an example of how a 

confusion matrix look like, with top-left and bottom-right numbers means correct prediction results. 

2.4 Using a Threshold Technique to Improve the Classifier 

In the neural network described above, when using the output neurons to make a prediction of which 

class does a specific data belongs to, a “torch.max()” function is used. The function can receive the output 

values from each output neuron and choose the neuron with the largest value as the prediction output. 

For instance, figure 2-5 shows an example of how a pair of output neuron values can be used to make a 

prediction. 

Figure 2-5: The prediction process using “torch.max()” 

 

However, Milne, Gedeon and Skidmore (1995) argue that choosing the largest one from the output 

neurons as the class of a data is not essential. For some binary dataset, setting the threshold as 0.5 (if the 

output values add up to 1) might give worse performance (Kogan 1991), comparing to have threshold 

larger or smaller than 0.5. Thus, to test with different threshold when predicting classes from output 

neurons, a “torch.softmax()” function is used instead of “torch.max()”, which can apply a softmax 

(Real class/Prediction class) Class 0 Class 1 

Class 0 40 15 

Class 1 21 41 

Figure 2-4: A confusion matrix example 

Y_pred is considered as holding the out value of the output 

layer, which can be represented as a pair of numbers: 

 

[7.2871e-01, 9.7955e-02], output from testing data row 1; 

[3.9019e-01, 3.9635e-01], output from testing data row 2; 

[7.8267e-01, 2.3727e-01], output from testing data row 3; 

 

for each pair of Y_pred data, the predicting process is: 

7.2871e-01 > 9.7955e-02, so predicted class is: Class 0; 

3.9019e-01 < 3.9635e-01, so predicted class is: Class 1; 

7.8267e-01 > 2.3727e-01, so predicted class is: Class 0; 

 

so the predicted result is: 

Predicted = [0, 1, 0] 



 

function to output values. As a result, the output values now add up to 1, which make setting a threshold 

from 0 to 1 possible, as shown in figure 2-6. 

Figure 2-6: Set a special threshold for predicting 

 

2.5 Using a Genetic Algorithm for Feature Selection 

Genetic algorithm is a bio-inspired technique learning from nature evolution to deal with a wide range 

of problems (Reeves, Rowe & SpringerLink, 2003). It can be used to find optimal or acceptable solutions 

when doing feature selection, according to Yang & Honavar (1998), since genetic algorithm can achieve 

multicriteria optimization considering select subsets and will usually perform well if well designed. Thus, 

in order to improve the performance of the classifier, I have applied a genetic algorithm to select features 

from the original dataset.  

In the genetic algorithm, DNA on each chromosome is a binary value, stands for if a feature should be 

used or not, where 1 stands for using a feature and 0 for not using it. Thus, the DNA size is 25 since there 

are 25 features in total. The chromosome with DNA is shown as figure 2-7. 

Figure 2-7: A chromosome example 

 

The fitness function of the genetic algorithm is based on the testing accuracy given by the NN described 

section 2.2, where the NN should be trained and tested 10 times with some features given by a 

chromosome, and the average accuracy is calculated as the fitness value.  

The reproduction process is based on fitness value given by fitness function. Chromosome with higher 

fitness value will have more chances to be selected as parents during the reproduction. If a chromosome 

is selected, then it will be recombined with a random another chromosome to produce children. The 

ranked selection of parent will make those chromosomes with higher fitness value have higher chances 

to reproduce, while the random selection of the other parent can provide more possibility solution space. 

Set threshold = 0.45 

rather than using torch.max(), here we use softmax() 

 

the softmax function will give output like: 

[0.5181, 0.4819]; 

[0.4440, 0.5560]; 

[0.3248, 0.6752]; 

 

#each pair of output values now add up to 1, and will be used for 

predicting based on the threshold: 

0.5181 > threshold, so the prediction class is: Class 0; 

0.5560 > threshold, so the prediction class is: Class 1; 

0.6752 > threshold, so the prediction class is: Class 1; 

 

Chromosome = [1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0] 

So, this chromosome means: The first feature is used; 

          The second feature is not used; 

          … 



 

The mutation function uses random mutation as its rule, so there might be more possibilities space can 

be discovered. After reproduction process, all parent chromosomes will be abandoned and those new 

chromosomes are set as the next generation.  

The overall settings of the GA are demonstrated in figure 2-8: 

Figure 2-8: GA settings 

 

3. Results and Discussion 

 

3.1 Results of Threshold Technique: 

A threshold technique is described in section 2.4, and to test with it, the original NN demonstrated in 

section 2.2 is used, with 500 epochs, 20 hidden neurons and 0.005 learning rate. Figure 3-1 shows how 

the average accuracy (testing 20 times) change when using different threshold (represented as θ) from 

0.25 to 0.75 (θ= 0.5 is the baseline).  

 

To make it easier to observe the relationship between accuracy and threshold, and to see the trend of it, 

figure 3-1 has been visualized to a line chart, as figure 3-2 shows. 

As it’s shown in figure 3-1 and 3-2, the best accuracy appears when θ equals 0.45, while accuracy equals 

69.82%. Figure 3-2 shows that, when the threshold increases from a low-level value (i.e. 0.25), the 

accuracy will increase, which means the performance of the binary classifier is improved. However, if 

θ = 0.25 θ = 0.30 θ =0.35 θ = 0.40 θ = 0.45 θ = 0.50 

64.59% 63.40% 66.81% 69.17% 69.28% 67.13% 

θ = 0.55 θ = 0.60 θ = 0.65 θ = 0.70 θ = 0.75  

66.77% 67.17% 65.93% 65.33% 64.25%  

Figure 3-1: Average accuracy for different threshold θ 

 
Figure 3-2: Line chart for threshold and accuracy 

DNA_size = 25, since there are 25 features in total; 

population_size = 40, so each generation will have 40 chromosomes; 

mutation_rate = 0.02, so each DNA on a chromosome will have 2% of 

chance to mutate to a different value. 

generations = 30, so there are 30 generations tested for the GA 



 

the threshold keeps increasing, the accuracy will be reduced, hence the performance of the classifier is 

reduced. This is a very significant observation, since it shows us that setting threshold as 0.5, or simply 

choosing the largest value from the output neurons as the prediction result, could possibly not be the best 

solution for a dataset, and might reduce the performance of a corresponding binary classifier.  

A possible reason for setting threshold as 0.45 not 0.5 might be observed from the prediction confusion 

matrix. Figure 3-3 shows the difference of confusion matrix of a classifier when using threshold 0.45 and 

0.5. 

Figure 3-3: Confusion matrix for threshold 0.45 and 0.50 

From figure 3-3 we can observe that, when the threshold is set as 0.45, more testing data could be 

regarded as class 1 rather than class 0. The correct prediction of class 1 increases from 35 cases to 43 

cases, while the correct prediction of class 0 decreases 3 cases. Also, the false prediction will be affected 

as well. The class-0 data are more likely to be predicted as class-1 data, as the wrong prediction increases 

from 16 cases to 17 cases. On the contrary, the class-1 data are harder to be predicted wrongly, since 

there are 6 less cases of wrong class-1 prediction (from 24 to 18). 

The confusion matrix indicates that, if the testing dataset can be predicted more accurately by setting 

some threshold, which might affect the prediction process and could especially work for those dataset 

have imbalanced label.  

Comparing to the paper published by Kim, Thomas, Sankaranarayana, Gedeon & Yoon (2015) which 

provided the dataset, my research direction is different. The paper is mainly focused on the dataset itself, 

and trying to figure out some relationship between some features inside the dataset, while my research is 

a binary classifier using neural network techniques. But, still there are something I can find from the 

paper. A very interesting thing is that, researchers of the paper will not use plenty of features as inputs 

for an analysis. For instance, the paper has described the relationship between search speed and fixation 

duration, and only focused on these two features, while I have used 25 features as inputs. This inspires 

me to think of if I have used too many features as inputs, including some features that has no relationship 

with the output attributes “size”. And this might be a reason why the binary classifier described above 

performs not really well (i.e. 70% of accuracy).  

Another thing I have found from the paper is about the task problem I have defined for this dataset. I 

have defined a binary classification problem for it, however, the dataset might be more suitable to other 

types of topics, like regression. The paper has used some statistical techniques on the dataset to make 

analysis on it, since most of the features in the dataset are numerical features, and this could make the 

dataset more suitable for topics using numeric relative models like linear regression.  

 

3.2 Results of the Genetic Algorithm 

When applying a genetic algorithm described in section 2.5, comparing to baseline NN, the accuracy of 

the binary classifier is improved. The best chromosome is found in the 25th generation, where the 

chromosome is represented as [1 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 0 1 1 0] with the fitness value 

When threshold = 0.50: 

Confusion matrix: [50., 16.] 

          [24., 35.] 

When threshold = 0.45: 

Confusion matrix: [47., 17.] 

          [18., 43.] 

 

 

 



 

(average testing accuracy) 69.89%, which is higher than the baseline NN which can be described as 

chromosome [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] with accuracy 67.12%, while in the 7th 

generation a chromosome [1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 1 1 1 0 1 0] has 59.78% fitness value 

which is much lower than the baseline NN. This performance indicates that some features in the dataset 

can contribute more than others.  

Comparing to the first generation where all chromosomes are randomly generated, in the last generation, 

some DNA on chromosomes are more commonly appears as “0” or “1”. For instance, in the last 

generation, there are 26 chromosomes with value “1” on the second DNA of the chromosome, which is 

90 percent and much higher than around 50 percent as baseline if the DNA value is randomly arranged 

as the first generation. On the contrary, there are only 8 chromosomes with value “1” and 22 with “0” on 

the 24th DNA, which shows that this feature is more likely to be irrelevant to the binary classification 

task. The chromosomes of the last generation are shown in figure 3-4. 

 

Chromosomes  

[1 1 0 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 1 0 0] [0 1 0 1 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1 1 0 1 1 0 0] 

[0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 1 1 0 0 1 0] [1 1 1 1 1 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 1] 

[0 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 1] [0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 0 0 0] 

[0 1 0 1 0 1 1 0 0 0 1 1 1 1 0 1 1 1 0 1 0 0 0 0 0] [1 1 1 1 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0] 

[1 1 0 1 1 0 1 1 1 0 1 1 0 0 1 0 1 1 0 1 0 0 0 0 1] [1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 0] 

[0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0] [0 1 0 1 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 1 1 1 1 0 0] 

[0 1 1 1 1 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1 1 0 0 0 1] [1 1 0 1 0 0 1 1 1 0 1 1 1 0 0 0 1 1 0 1 1 0 1 1 1] 

[1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0] [0 0 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 0 0 1 0 0 0 1 1] 

[0 1 0 1 0 1 0 0 1 1 1 0 1 0 0 0 1 0 0 1 1 0 0 0 1] [0 1 0 1 1 1 1 1 1 0 1 0 0 0 0 1 1 0 0 1 1 1 0 0 1] 

[1 1 0 1 1 0 1 1 1 0 1 0 0 1 0 0 1 1 0 1 0 0 0 0 1] [1 1 0 1 0 1 0 0 0 1 0 0 0 0 0 1 1 1 0 1 0 1 1 0 0] 

[0 1 0 1 0 1 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 0 1 0 0] [1 1 0 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1] 

[1 1 1 1 0 1 1 0 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0] [0 1 0 1 0 0 0 1 0 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1 1] 

[1 1 0 1 0 1 1 1 0 1 1 1 1 0 0 0 1 1 0 1 1 1 0 0 0] [1 1 0 1 0 1 0 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 0 0] 

[1 1 0 1 0 1 0 0 0 1 0 1 1 0 0 1 1 1 0 1 0 0 0 0 0] [0 1 0 1 1 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1] 

[0 1 1 1 1 0 1 1 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0 1 1] [0 0 1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 1 1 1 1 0 0 1] 

[1 1 0 1 0 0 1 1 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 1] [1 1 0 1 0 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 1 0] 

[1 1 0 1 0 1 0 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 0 0] [1 1 0 1 1 0 0 1 1 1 1 1 0 1 0 0 1 1 0 1 0 0 0 0 0] 

[1 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0] [0 1 1 1 0 1 1 1 1 0 1 0 0 0 0 1 1 1 0 1 1 0 0 0 1] 

[1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 1 0 1 1 1 0] [1 1 0 1 0 0 1 1 1 0 1 0 0 1 0 0 1 1 0 1 0 0 0 0 0] 

[1 1 0 1 0 1 0 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 0 0] [1 1 0 1 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 1 0 0 1 0 0] 

Figure 3-4: the chromosomes of the last generation 

It can be observed that: the 2nd, 4th, 17th and 18th DNAs are more likely to be value “1”, which indicates 

that corresponding features are more likely to contribute to the classifier, while the 15th, 22nd, 23rd and 

24th DNAs are more likely to be value “0” and irrelevant to the classification task. Thus, features should 

be selected so as to build a better classifier. 

 

 

4. Conclusion and Future Work 

 

In this paper, I have solved a binary classification problem using neural network and threshold adjustment 



 

techniques. The implementation is based on Python/Pytorch coding, and is described above. However, 

the neural network is still not good enough for the given classification problem, since the accuracy is not 

good enough for a binary classification task. There are some limitations of the baseline network, and the 

most significant one is about I have used too many features as inputs, which has been discussed in section 

3. To figure out which feature is relative and which is not, a genetic algorithm-based feature selection 

technique is used, but different to what Li et al. (2018) and Ang et al. (2016) has demonstrated on their 

paper. The genetic algorithm I have implemented is still not perfect for the feature selection task, since 

the classifier accuracy only increase about 2 percent. This is probably because of my genetic settings, 

and having larger population with more generations could provide a better convergent feature selection 

result giving more accurate predicting result. Also, as described above, I have used ranked-based 

selection method to choose one parent and randomly chose another one, which might be improved with 

other selection methods like Elitism selection or Hall Of Fame selection. 

Another problem is also discussed in section 3, about if the dataset is suitable for a classification task 

using neural network techniques. Some future work can be done to determine if this dataset is more 

suitable for a regression task. In addition, the inner implementation of the NN might be not good enough 

for this task. The neural network is trained with Stochastic Gradient Descent (SGD) optimizer, and use 

the cross entropy as the loss function, but there is less evidence can indicate that they are the best choice 

for this task. Thus, to improve the performance of the NN, some other optimizer can be used, while the 

“BCEloss()” loss function can be tried on the NN, since it is specialized designed for binary classification 

task (Torch Contributors 2019).  

There are some more techniques can be applied and used on the implementation described in this paper, 

and more researches should be done on the classifier to improve its performance in the future. 

 

 

5. References 

 

Ang, J.C., Mirzal, A., Haron, H. & Hamed, H.N.A. 2016, "Supervised, Unsupervised, and Semi-

Supervised Feature Selection: A Review on Gene Selection", IEEE/ACM Transactions on Computational 

Biology and Bioinformatics, vol. 13, no. 5, pp. 971-989. 

 

Hawkins, D.M. 2004, "The Problem of Overfitting", Journal of Chemical Information and Computer 

Sciences, vol. 44, no. 1, pp. 1-12. 

 

Kim, J., Thomas, P., Sankaranarayana, R., Gedeon, T. & Yoon, H. 2015, "Eye‐tracking analysis of user 

behavior and performance in web search on large and small screens", Journal of the Association for 

Information Science and Technology, vol. 66, no. 3, pp. 526-544. 

 

Kogan, I. 1991, "Speculative experiment with neural networks on separation and scoring in financial 

applications," IEEE International Joint Conference on Neural Networks, vol. 1, pp. 775-776. 

 

Lewis, H.G. & Brown, M. 2001, "A generalized confusion matrix for assessing area estimates from 



 

remotely sensed data", International Journal of Remote Sensing, vol. 22, no. 16, pp. 3223-3235. 

 

Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R., Tang, J. & Liu, H. 2018, "Feature Selection: A 

Data Perspective", ACM Computing Surveys (CSUR), vol. 50, no. 6, pp. 1-45. 

 

Milne, L.K., Gedeon, T., & Skidmore, A.K. 1995. “Classifying Dry Sclerophyll Forest from Augmented 

Satellite Data: Comparing Neural Network, Decision Tree & Maximum Likelihood”. training, 109(81), 

0. 

 

Reeves, C. R., Rowe, J. E., & SpringerLink (Online service). (2003). Genetic algorithms: Principles and 

perspectives : A guide to GA theory. Boston, MA: Kluwer Academic Publishers. doi:10.1007/b101880 

 

Torch Contributors 2019, ‘PyTorch docs’, viewed 1 May 2020, 

https://pytorch.org/docs/stable/nn.html?highlight=bceloss#torch.nn.BCELoss 

 

Yang, J., & Honavar, V. (1998). Feature subset selection using a genetic algorithm. IEEE Intelligent 

Systems and their Applications, 13(2), 44-49. doi:10.1109/5254.671091 

 


