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Abstract. Facial expressions play an essential role in human interaction. Among all emotions, anger is the
most intense one carrying hostile response to provocation and behaviours. Hence determining the veracity
of an individual’s displayed anger is important for human-machine interaction. In this context, automatic
emotion recognition becomes an active research topic in early eras. In comparison to other techniques,
bidirectional Long Short-Term Memory (Bi-LSTM) yields satisfactory results on processing time series
data. This paper describes experiments on implementing Bi-LSTM with Bimodal Distribution Removal
(BDR) as an anger-veracity estimator. The result shows the effectiveness of Bi-LSTM and suggests BDR
stabilises the model and shows its potential on larger dataset. Lastly, a proposed variant version of BDR is
more generalised and maintains the ability of original version.

Keywords: Bidirectional Long Short-Term Memory · Bimodal distribution removal · K-fold cross-validation
· Time Series Classification · Pupillary Response

1 Introduction

Interpersonal human communication not only includes verbal information but also contains gesture, intonation,
tone of voice and emotions. Those nonverbal expressions convey feelings and reflect one’s mental states. Many
researchers, especially psychologists, intend to understand human emotions and develop principle concepts in
the area of human-computer interaction. Ekman and Freisn are pioneers identifying six basic emotions, including
anger, fear, disgust, joy, surprise and sadness, as universal emotions among humanity [11].

In this case, a number of projects aim to design algorithms to improve the accuracy of emotion recognition.
With regard to recognition accuracy, correctly determining the veracity is a significant factor. In early stages,
researchers payed more attention on the models built on verbal responses of participant. The accuracy is
approximately 60%, which is moderately better than gambling with accuracy of 50%. Recently, a model trained
by participant’s pupillary responses achieves estimation accuracy up to 95% [8]. In this case, classifiers trained
by pupillary response attracts increasing attention.

The are a number of effective classification techniques. Logistic regression, a traditional machine learning
algorithms, yields encouraging results when classifying objects such as breast cancer diagnosis [24]. However, when
it comes to dealing with complex data, logistic regression is unreliable. It assumes that the linear relationship
between inputs and target, and this constraint makes this model inapplicable in many cases [22]. Artificial neural
network tackles the dilemma of Logistic regression. It is able to deal with non-linearity of data and target, but
it fails to handle time-series data and variable length data. Therefore, inspired by the model mentioned in [8],
this paper constructs a Bi-LSTM network to estimate the genuineness of displayed anger. LSTM is a Recurrent
Neural Network (RNN) with memory units to deal with the vanishing gradient problem of traditional RNN [7].
Bi-LSTM further takes both the input sequence and its reverse to fully understand question. It is well-suited for
problems including classification, processing and prediction based on time series data.

In addition to the choice of classifiers, some techniques are introduced to improve accuracy. Bimodal
distribution removal is an algorithm capable of detecting outliers and preventing overfitting by early stopping
[18]. K-fold cross-validation is an unbiased technique famous for increasing the utilisation ratio of data, this
paper uses it to evaluate model performance.

In following sections, we will depict the architecture of neural network and introduce techniques to implemented
during experiments. We then explain the evaluation method and compare it with other evaluation standards.
After analysing the evaluation method, we experiment about the effects of data processing methods, k-fold
cross-validation and BDR on model performance. The results provide evidence that the proposed data processing
technique is beneficial, k-fold cross-validation indeed measures the performance of neural network unbiasedly
and BDR increases the stability of model.
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2 Methodologies

This paper formulates the anger-veracity estimation problem as a classification task. We firstly design a neural
network and implement BDR to improve performance. The idea behind this paper is to investigate the performance
of neural network, the utility of data preprocess method, BDR and k-fold cross-validation. The flow chart of
overall classification tasks is shown in Figure 1. The design of this section follows the whole procedure drawn in
figure. The whole procedure of classification are mainly divided into three parts, which are preprocessing, using
5-fold cross-validation to evaluate and select models and final classification. We then use BDR to denoise data to
seek further improvements.

Fig. 1: Flow chart of all tasks

2.1 Dataset

This dataset is data derived from the one in the experiment conducted in [3]. In their experiment and other
similar research, models based on these statistics yield satisfactory results. In this case, we construct a new
model as a further study to investigate the significance of pupillary response on anger-veracity estimator.

This dataset contains time series data recording the diameters of 20 participants’ pupils when they were
watching 20 videos with time step of 1

60 second. Samples distributes evenly, which means there are equal number
of samples labelled as genuine and posed. Balance of two classes helps us to build a less biased model. Besides,
20 videos are of different lengths and the 0 occurs if the participant was blinking.

In addition, we further construct a dataset which contains processed data from this dataset to build an
orthodox Artificial Neural Network for comparison with this model. This dataset consists of 400 pieces of data
with 8 features. These features include participant ID, video ID, and some real-value statistics from pupillary
response.

2.2 Data Preprocessing

Since each column of dataframe represents the diameter of participant’s pupils, we consider each column as a
time-serial data. In terms of zero, there are a few methods to implement. Firstly, we replace the zero values by
the data from the other eye. For instance, if the participant P1 for video F1 for 10th second is 0, then it will be
filled with the corresponding value from right eye. When both two data are 0, we implement a self designed
algorithm. The formula is given by:

Xi

Xi +
∑N

n6=iXn

=
mean(Xi)∑N
n mean(Xn)

(1)

⇒ Xi =
mean(Xi)∑N

n mean(Xn)−mean(Xi)
·

N∑
n 6=i

Xn (2)

Xi represents the value to replace 0 and mean(Xi) is the mean value for this column. The idea behind the
method is that we recover the current state of data by reading other participants’ states. To be noticed, we will
solely count the zero-free rows so as to reduce the influence of zero to minimum. Since reactions from participants
are similar for each video, we implement this method dataframe-wise. After processing zero values, it is generally
followed by normalisation. Sola and Sevilla [19] demonstrated the significance of normalisation on convergence
speed and result quality. Jayalakshmi and Santhakumaran [9] supported that normalisation helps to increase
the reliability of backpropagation in a gradient-based algorithm. Additionally, we find the pupil size of each
participants are significantly different. The main idea of the research is to change of pupil size with respect to
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time. We therefore conduct standardisation before training model. There are two methods can be utilised before
training, which are normalisation and standardisation. The equation is shown as:

Y =
X −Xmin

Xmax −Xmin
(3)

Y =
X −Xmean

Xstd
(4)

In formula, Y is the normalised data and X is the original one. In this paper, standardisation is chosen. The
reason is that normalisation locates data within [0, 1] while standardisation can further form data points to be
normal distributed. At the same time, standardisation maintains the nature of each statistic except magnitude.
Neural network is essentially a set of weights reflecting relationship of between attributes of statistics and targets.
This implies attributes with greater magnitude tend to exert stronger influence on network. Neural network is
supposed to learn the significance of each attribute according to its designed algorithms other than preassigned
magnitudes. Thus, restricting attributes within a ranges is desirable and beneficial.

2.3 Bidirectional Long Short-Term Memory (Bi-LSTM) Architecture

Human brain can be depicted as a complex system or network [1], it can understand cognitive and non-linear
variables [2]. Vaguely inspired by biological neural network constituting animal brain [4], neural network
is introduced and constructed to perform tasks. Such system is capable of handling complex examples by
understanding and learning features. It is able to deal with data regardless of quantity and dimensionality. In
addition to this, it generally learns the features without studying task-specific rules and prior knowledge.

As the data are time series and each video is variable length, we construct deep learning model to improve
result quality. In this case, Bi-LSTM is the optimal choice. The basic structure of Bi-LSTM is shown in Figure 2:

Fig. 2: Implicit Structure of Bidirectional LSTM

This figure shows the basic structure of one layer Bi-LSTM. The final model in experiment is two-layers Bi-LSTM.
The reason to utilise a bidirectional model is that the bidirectional model can better understand the feature of
sequence as it knows the information before and after the current state [17]. Within Bi-LSTM, dropout is also
used to prevent overfitting and improve time efficiency [20]. Lastly, after processed by Bi-LSTM, data then flows
into a linear layer to generate labels.

2.4 Loss function and Optimiser

Loss function is a method to calculate dissimilarity between predictions and real labels. In this model, we employ
cross-entropy loss function, as it generally performs better results than other methods on classification [21].
The calculation is formulated below.In the function, yn is the output of neurons and ŷn is a value returned by
sigmoid function.

L(w) = − 1

N

N∑
n=1

[ynlog(ŷn) + (1− yn)log(1− ŷn)] (5)

Adam, an algorithm optimising first-order gradient of stochastic objective function. It is straightforward, memory-
efficient and well-suited for problems [10]. Unlike other optimisers, Adam generates more intuitive interpretation
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of hyperparameter and requires less tuning, which is time-saving for adjusting parameters. However, it is shown
that Adma fails to converges to optima when it comes to a simple convex optimisation problem [15]. This is
caused by the exponential moving average in algorithm setting, so we employ the variant version ’amsgrad’
proposed in [15]. In addition, we further use adamW [13] to repair weight decay regularization in original Adam.

2.5 Mini-batch Stochastic Gradient Decent and Pack Padded Sequence

Mini-batch Stochastic Gradient Decent is a method updating gradients in training. Generally, algorithms update
weights in neural network after training all data. This method splits a cluster of samples into small batches.
It then updates weights according to loss of each batch. This step accelerates the convergence of training and
tackles issues arisen by local minimal [12]. In addition, Bi-LSTM generally takes a large amount of time to train
on sequences, Mini-batch is capable of drastically shortening this procedure.

Since we have variable length sequences, mini-batch with variable length of data is not supported by pytorch.
Besides, Bi-LSTM uses the reverse of sequences, so it is unreasonable to fit padded data into training. We
therefore introduce zero padding for each sequence to ensure sequences in batch with same length, and use ’pack
padded sequence’ to omit padded zeros when feeding into model.

2.6 Bimodal Distribution Removal

BDR is an algorithm removing outliers introduced in [18]. It firstly collects the dissimilarity of predictions and
real labels and computes the variance. Then, we launch the process when variance < 0.1. as low variance means
neural network has partially learnt data. It relies on mean loss to identify outlier candidate. The threshold
condition of deletion is formulated as below.

ei > Mean(L) (6)

ei > Mean(Lc) + α · Std(Lossc) (7)

Mean(Lc) is the mean loss of all candidates, and Std(Lc) is standard deviation. α is a constant whose range
is (0, 1]. This algorithm basically uses statistical features to navigate outliers and carry on deletion. Bimodal
distribution of error frequency implies noises are stopping models from learning the general representation of
data. We therefore need to remove them so as to reach convergence and redirect model onto the right path. In
general, real life information follow normal distribution. A smaller amount of data can be identified as noise if
they lead distribution to be bimodal. This phenomenon further reasons the rationality of BDR.

2.7 Hyperparamters Setting

Hyperparameters are parameters that neural network is unable to learn as training proceeds. Capability of model
varies with respect to different configurations of hyperparameters [23]. In this paper, we have to choose the
settings of both Bi-LSTM and BDR. We follow One-factor-at-a-time Method by setting random seed to change
one independent variable at a time. After optimisation, we attain a series of optimal or suboptimal answers.
Bi-LSTM has two layers with 32 hidden cells and dropout rate of 0.3, and there are 64 instances in each batch.
Training epoch is 100 and the constant α in BDR is 0.2. As for evaluation, fold number is set as 5.

2.8 Evaluation method

We execute two methods, k-fold cross-validation and Matthews correlation coefficient (MCC), to score models.
K-fold cross-validation generates multiple models, and we select the best version whose score is computed
according to the formulae of MCC.

5-fold Cross-Validation K-fold cross-validation is a statistical technique to assess model performance. It
deals with the issues arisen by randomisation. It is generally hard to assess the performance, because randomly
splitting dataset causes trained model erratic. The classifier can be biased to one class, because training set
can be imbalanced between two classes due to randomisation. Cross-validation addresses it by dividing samples
into folds thus generating k models. Each data point fully engages in the process of train-test loop without
being ’wasted’ in test set. All models are assessed by evaluation method, and we then select the model with
highest score. In this experiment, we employ 5-fold cross-validation. 5-fold, as illustrated in [16], is reasonably less
unbiased and time-saving. It, meanwhile, maintains the ratio between train-test set as 0.8, which is empirically
preferred.
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Table 1: Confusion Matrix

Class: Genuine
(Actual)

Class: Posed
(Actual)

Class: Genuine
(Predicted)

True Positive
(TP)

False Positive
(FP)

Class: Posed
(Predicted)

False Negative
(FN)

True Negative
(TN)

Matthews correlation coefficient It is important to evaluate model capability. We take both MCC score to
measure functionality of models. To begin with, we introduce the following confusion matrix:

In predictive analytics, a confusion matrix is a 2 by 2 table counting the number of TP, TN, FP and FN.
(1). True Positive: Data classified as Genuine with originally labelled with Genuine.
(2). False Negative: Data actually belonging to Genuine while being misclassified.
(3). False Positive: Instances meant be Posed but mis-identified.
(4). True Negative: Instances with prediction aligned with actual class of Posed.
In early age studies, we use F1 to evaluate performance. It is computed as following. Precision is the fraction

of True Positive cases among all instances predicted as positive class. Recall is the fraction of True Positive
instances among total number of relevant samples. We then further proposed F1 score. This score is the harmonic
mean of precision and recall. However, David Hand and others criticised F1 as it gives assign precision and recall
with equal weights.

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 = 2 · Precision ·Recall
Precision+Recall

(10)

In addition, F1 and Accuracy may mislead researchers by providing over-optimistic results. When class sizes
are imbalanced, neural network is likely to attach a larger bias to the majority class. The classifier labels each test
instance by the dominant class regardless actual features of them. This causes an illusion that accuracy is effective
and intelligent as most of instances are identified as the dominant class. Furthermore, by conducting 5-fold
cross-validation, groups are randomly generated. It is not necessarily guaranteed that instances are uniformly
distribution in each fold.

In order to deal with above situations, Matthews correlation coefficient (MCC) is introduced. It is generally
regarded as a balanced measure which maintains functionality even if classes are of significantly imbalanced sizes
[14]. The function is given as:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(11)

As a correlation coefficient, MCC calculates the geometric mean of regression coefficients to avoid accuracy-illusion
[5]. It comprehensively takes both classes into consideration. As both classes matter in MCC, it avoids tyranny
of the majority.

3 Results and Discussion

In this part, we mainly rely on One-factor-at-a-time method. We will discuss three topics: 1) Investigate the
effectiveness of self-defined zero-value processing method 2) Test if 5 cross-validation evaluates the results better
2) Is BDR effacious? Does it successfully remove outliers? 3) Evaluate if Bi-LSTM preforms better than original
LSTM and compare it with other models including logistic regression and orthodox neural network.

3.1 Effectiveness of Self-defined zero-value processor

Since the final model in this paper has accuracy around 95%, it is hard to detect the difference between each
method. In order to better illustrate effects of each method, we further construct a less accurate model. This
model is a basic LSMT without any other techniques. Three methods include: keep zero values (Keep), Linear
Interpolate (LI) and self-designed one (SD). The performance is measured by MCC. According to the table, it
can be seen that the SD performs moderately better than LI and Keep method for advanced LSTM model, and
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basic model attains more obvious improvements by SD. The reason why PD performs better might be that this
research focuses on the change of pupillary response. LI sometimes introduces additionally increase or decrease
on data change. In terms of stability, standard deviation of five times of training is computed. SD is less stable
as this method leads data more artificial, so that further studies about variant form of SD can be conducted.

Table 2: Comparison between with/without cross-validation

Basic LSTM Advanced LSTM

Trial Keep LI SD Keep LI SD

1 0.84 0.86 0.90 0.68 0.70 0.71
2 0.86 0.87 0.87 0.63 0.67 0.64
3 0.85 0.85 0.91 0.57 0.63 0.82
4 0.84 0.85 0.89 0.67 0.65 0.65
5 0.84 0.88 0.91 0.63 0.66 0.71
6 0.83 0.88 0.87 0.64 0.68 0.67
7 0.85 0.87 0.88 0.67 0.67 0.65

Mean 0.844 0.865 0.89 0.64 0.67 0.70

Std 0.009 0.010 0.016 0.035 0.020 0.058

3.2 Benefits of 5-fold Cross-Validation (5-CV)

To start with, we reason about the necessity of 5-fold cross-validation. In advance to testing, we dismiss this
algorithm and compare results of the version equipped with K-fold. As for other factors, we assign all parameters
with values stated in subsection 2.7 and implement without BDR. Table 3 illustrates the ability of evaluation
method.

Table 3: Comparison between with/without cross-validation

With 5-CV Without CV

Trial MCC Acc MCC Acc

1 0.90 95% 0.89 92%
2 0.91 95% 0.86 93%
3 0.89 95% 0.81 90%
4 0.87 94% 0.85 92%
5 0.92 96% 0.88 94%
6 0.90 95% 0.90 95%
7 0.90 95% 0.89 94%

mean 0.90 95% 0.87 93%

Std 0.015 0.53 0.029 1.552

From Table 3, the version without 5-CV reveals the instability of randomisation. It is potential to produce a
high-quality estimator but it is of low probability. The standard deviation indicates that, without CV, evaluation
method is biased and less stable. In contrast, k-fold cross-validation generally provides an optimal or suboptimal
evaluation results. It does not guarantee the minimum influence of group splitting of solutions but it does provide
satisfactory answers. Thus, we conclude k-fold cross-validation comprehensively evaluates the performance.

In terms of fold number, we execute programs with different fold numbers to check if 5-fold is optimal. Before
fitting data into process, a test set is split from dataset. Among k candidates, we uses the best model to test on
test set to check if the reliability of this method. The following table shows the average results of 5 different
random seeds. According to Table 4, we can find the 5-fold is optimal. 5-CV has both satisfactory mean and
standard deviation of MCC. It is because it has a empirically ideal train-test ratio of 4 (i.e. 80% training data),
while other fold number either has ’waste’ a large amount of data on training which leads underfitting or allocate
a small number of data for testing which makes results sensitive to data-splitting. Larger K number is more
applicable than 5 folds if a larger dataset is provided, but 5-CV is optimal in this paper.

3.3 Effectiveness of Bimodal Distribution Removal

BDR is built based on statistics. It regards the occurrence of bimodal distribution as a signal that outliers
are trying to mislead models. Hence, we start to prune them to improve model quality. To examine if BDR is
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Table 4: MCC on fold number

K mean std

2 0.86 0.048
3 0.87 0.025
4 0.89 0.019
5 0.89 0.017
6 0.85 0.065
7 0.87 0.041
8 0.88 0.054
9 0.89 0.064
10 0.89 0.060

functional, we design two modes. The difference is whether deploy BDR, while other settings remain the same.
After contrasting results, we conclude if BDR is efficacious and explain in details.

This subsection plots two figures which are 1st and 51th error distribution with BDR. , According to Figure 3,
it illustrates that error distribution of data is bimodal distribution, which supports the idea in [18]. After trained
for 50 epoch and once execution of BDR, it shows that the model better understands data as error of data
decrease and data become less scattered. In this case, this indicates BDR indeed denoises daatset.

Fig. 3: 1st Error Distribution with BDR Fig. 4: 51th Epoch Error Distribution without BDR

There exists solely one constant α in Equation 6, so it is a key value affecting performance. We then plot the
MCC with respect to α. The results are shown in Figure 5. From figure, α ranges in [0.0, 0.6] performs the
same, and BDR becomes worse as α approaches to 0.7. The reason might be that BDR converges for α ≤ 0.6
in this epoch which means all possible outliers are detected, yet larger α keeps more data to maintains high
MCC. However, we maintain α = 0.2, because it is more generalised to remove more noise for each time of data
splitting.

Fig. 5: Constant alpha and MCC
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It is advised that BDR breaks down when the training set is ’clean’ [18]. We therefore investigate if training
examples are clean. The approach is to plot distribution of errors with first round of training. As shown in
Figure 3, it is not an typical bimodal distribution but it is similar to normal distribution, which is preferable
as it validates further inference on dataset [6]. Since training set is relatively clean, small in size and evenly
containing either label, BDR is less applicable. As a variant version, instead of directly commencing BDR by
variance ≤ 0.01, we add an extra condition in advance to the start of algorithm. The condition is to lock the
function if variance < 0.1 in first epoch. In the previous edition, variance ≤ 0.1 signals that outlier appears.
This validates inputs are clean if the signal occurs in first epoch.

In addition to calculating variance, we further try to replace the Equation 6 and Equation 7 by below formula.
In Equation 12, x means data points to be removed. µerr and σerr represent the mean and standard deviation
of errors accordingly. This idea is inpired by the features of normal distribution. In Equation 13, Q1 is the
first quantile and Q3 is the third one. IQR is the interquartile range of all errors. We than remove intersection
between candidates of two formula. We have a normal distribution of errors after the first epoch of training in
Figure 5. In this case, we remove noise instances after the first epoch of training instead of executing through
iterations.

(x > µerr + 3 ∗ σerr) ∪ (x < µerr − 3 ∗ σerr) (12)

(x < Q1 − 1.5 · IQR) ∪ (x > Q3 + 1.5 · IQR) (13)

Then, we compares the results of the original version and update version. The results are shown in Table 6.
Updated BDR is applicable and yields accurate predictions, and it is moderately better than the original version.
Outliers are detected and removed given this clean and small dataset. It might be less generalised compared to
the original version, but it also yields satisfactory results.

Table 5: Test on update of BDR

Original BDR Variant BDR

Round MCC Accuracy MCC Accuracy

1 0.86 93% 0.91 95%
2 0.89 94% 0.88 94%
3 0.88 94% 0.89 94%
4 0.90 95% 0.89 94%
5 0.87 93% 0.92 95%

3.4 Comparison to Logistic Regression (LR)

In previous sections, we examine the ability of techniques within the structure of Bi-LSTM. We do not know if
it, as an estimator, is more effective than other models. In this section, we compare neural network with Logistic
Regression and orthodox feedfoward neural network. We remain all dependent variables the same as what we
derive from previous sections to maintain the accuracy of experiment.
Due to the limit of Logistic Regression and Orthodox neural network, data are process to fit into models. The
dataset consists of 400 pieces of instances with 8 features. Samples are distributed evenly, which means there are
equal number of sample labelled as genuine and posed. First two columns are labels with participants ID and
video ID. The other features are real-value statistical data extracted from pupilliary response.

Table 6: Compare ANN, Logistic Regression and Bi-LSTM

Logistic regression Basic Neural network Bi-LSTM

Trial MCC Accuracy MCC Accuracy MCC Accuracy

1 0.083 54.11% 0.542 76.62% 0.913 95%
2 0.145 53.25% 0.710 85.29% 0.894 94%
3 0.096 54.79% 0.665 82.19% 0.907 95%
4 0.094 53.85% 0.637 80.77% 0.919 96%
5 0.054 50.96% 0.723 86.53% 0.881 93%
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Looking at MCC, we find Logistic regression behaves as a gambler. The malfunction of logistic regression
means the relationship between features and targets is non-linear. The orthodox neural network performs better
than Logistic regression but still not accurate enough. It partially learns the data extracted from original dataset.
Bi-LSTM performs significantly better than the other two, which means it fully understands data and is able to
accurately classify sequence.

4 Conclusion and Future work

In summary, this paper demonstrates a bidirectional Long Short-Term Memory functioning as an anger-veracity
estimator. This paper firstly designs a stable and accurate neural network by assembling an appropriate loss
function and optimiser. We then derive a comprehensive evaluation method, by adopting MCC, which effectively
avoids high-accuracy illusion. The next section further analyses the function of BDR statistically, and we propose
an upgrade of this algorithm from the results. The outcome reflects that the new version successfully detects
the cleanness of the dataset and yields accurate results. Lastly, this paper provides a comparison between
the performance of logistic regression, basic feedfoward neural network and Bi-LSTM. The results imply that
Bi-LSTM is more stable and accurate.

If we are to conduct a further research in depth, we should consider the effects of hyperparamters more carefully.
Even though the exploration of the optimal configurations is tedious, tuning parameters is an indispensable
step in designing a neural network. It would be preferable if more experiments can be conducted to optimise
parameters. Furthermore, the design of experiments needs to be more rigorous. A pre-assigned random seed does
not necessarily entail whether the influence of randomisation is present. We frequently evaluate performance by
averaging scores in previous experiments, and relying on the mean scores of five results might be insufficient to
draw a conclusion. Hence, a more rigorous experiment needs to be designed to cope with randomisation.
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