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Abstract: In this paper, different types of neural networks were built for oil reservoir porosity and permeability 
prediction. The feed-forward networks were trained using traditional back-propagation method and evolutionary 
algorithms (EA). Network Reduction was also implemented. The EA methods included Evolving Neural Networks 

through Augmenting Topologies (NEAT). The networks were trained multiple times with each method for each 
problem. The results of different methods were evaluated and comparisons were made. The efficiency of the involved 
methods was discussed. The trained neural networks can predict the targets with acceptable loss. NEAT can generate 
more accurate networks, but the training is slower and the result of training is more unstable. 
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1. Introduction 

1.1 Machine Learning 

Machine learning are widely used to solve a variety of problems. Feed-forward neural networks of a few layers trained 

by back-propagation is one the most popular traditional approach [1]. However, the hidden units of the networks are 

usually more than what reality requires, resulting in a final network with unnecessary units for post-learning. Network 

Reduction is a solution to this issue. Another problem is that the traditional feed-forward neural network cannot deal with 

higher level problems with more complex relationship. The evolutionary algorithms (EAs) have been widely implemented 

in science and engineering for solving more complex problems [2]. The EA method used in this paper is NEAT, which 

fixes the topology of the network and learns significantly faster than the other EAs [3]. 

1.2 Oil Reservoir Background 

Porosity and permeability of oil reservoir is essential for oil well engineering. The objective of this paper is to predict the 

Porosity and permeability of the oil wells based on the other features from the wells. 
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1.3 Dataset 

The dataset used in this report is a benchmark data file for AI Research in Reservoir Characterisation at UNSW. The data 

set is obtained from an oil reservoir in the North West Shelf, offshore western Australia [4]. Data from four wells were 

available. According to the original Introduction to the Benchmark Data Set, the engaged data of the wells were separated 

into 3 pairs of datasets with a training set and a testing set. 

Features 

The well logs available are: GR (Gamma Ray), RDEV (Deep Resistivity), RMEV (Shallow Resistivity), RXO (Flushed 

Zone Resistivity), RHOB (Bulk Density), NPHI (Neutron Porosity), PEF (Photoelectric Factor) and DT (Sonic Travel 

Time). 

Targets 

The objective is to develop an estimator to predict porosity (PHI) and permeability (logK) from well logs. 

Others 

The data set also contains Lithofacies and FLAG. Lithofacies is defined by expert geologist who has examined the actual 

rock samples (“cores”) and put all the samples into classes [5]. FLAG shows that goodness of the core samples. It is 

characterised by “Good,” “OK,” or “Frac.” These values were not considered in this report. 

2. Methods 

2.1 Data Preprocessing 

The features and the targets of the oil well dataset were normalised between 0 and 1. 

2.2 Traditional Feed-forward Neural Networks 

2.2.1 Network Structure 

The neural networks were initialized as pytorch 3-layer neuron networks with 8 input neurons, 8 hidden neurons and 1 

output neuron. Sigmoid activation function and SGD optimizer was used in the network. 6 networks for 2 targets from 3 

pairs of datasets have been trained. For each pair of datasets, 2 networks have been trained with the features and targets 

mentioned in 1.3. 

2.2.2 Loss Function 

The mean squared error (MSE) loss function was chosen for neural network evaluation, because both PHI and logK 

(targets) were numeric. 

  



2.2.3 Training Process 

The training was started with a high learning rate (0.01) and was adjusted observing the loss-epoch curve during training 

(0.0015 as the final learning rate). (Although the lowest loss that the training with learning rate = 0.01 reached was 

approximately the same as the one with rate = 0.0015, the curve of the latter one is more similar to the tendency of a good 

learning rate.) Each network was trained by 500 epochs using back-propagation of error measures. 

 

Fig.1. Loss-epoch curve (Dataset 1, PHI, learning rate = 0.01). The curve shows the change of the MSE loss (y-axis) with 

respect to the epochs (x-axis) 

 

Fig.2. Loss-epoch curve (Dataset 1, PHI, learning rate = 0.0015) 

2.2.4 Network Reduction 

The hidden units of the networks are usually more than what reality requires, resulting in a final network with unnecessary 

units for post-learning. To solve this issue, a developed algorithm in the previous study for detecting and removing 

undesirable hidden units were implemented to the trained neural networks. This algorithm is based on the distinctiveness 

between the expression of the hidden units on input patterns [6] and it can generally maintain functionality of networks. 

  



2.3 NEAT 

2.3.1 Overview 

The aim of traditional genetic algorithms is to optimize the connection weights that determine the functionality of a 

network. However, the topology of neural networks also affects their functionality [3]. Fixing the topology of the network 

is a time-wasting progress with few standards. However, while training with NEAT, the network structure is evolved such 

that topologies are minimized and grown incrementally, significant gains in learning speed result [3]. 

NEAT is an example of a topology and weight evolving artificial neural network (TWEANN) which attempts to 

simultaneously learn weight values and an appropriate topology for a neural network. It is based on applying three key 

techniques: tracking genes with history markers to allow crossover among topologies, applying speciation (the evolution 

of species) to preserve innovations, and developing topologies incrementally from simple initial structures. 

Genes Tracking with History Markers 

The genetic encoding scheme of NEAT is designed to allow corresponding genes to be easily lined up when two genomes 

cross over during mating [3]. Genomes are linear representations of network connectivity. An innovation number is 

provided by each node gene for corresponding genes finding [3]. 

When a new gene appears through structural mutation, a global innovation number is incremented and assigned to this 

gene. Therefore, the innovation numbers represent a chronology of the appearance of every gene in the system and the 

historical origins are saved [3]. historical markings allow NEAT to perform crossover using linear genomes without 

expensive topological analysis [3]. 

Speciation, Topologies Developing and Competing Conventions 

Speciating is to divide the population into species such that similar topologies are in the same species [3]. This way, 

topological innovations are protected in a new niche where they have time to optimize their structure through competition 

within the niche [3]. 

Competing Conventions means having more than one way to express a solution to a weight optimization problem with a 

neural network [3]. The main insight in NEAT is that the historical origin of two genes is direct evidence of homology if 

the genes share the same origin. NEAT performs artificial synapsis based on historical markings, allowing it to add new 

structure without losing track of which gene is which over the course of a simulation [3]. 

2.3.2 Fitness Function 

I took the sum of the differences between the prediction and the truth value as the fitness function for each individual 

(species), because both the targets were numeric. Although the fitness was lower than 0, the algorithm worked as expected. 

2.3.3 Training Process 

An existing python algorithm in the NEAT package and its visualization package were imported and used for training. 

The training parameters for NEAT were listed in an independent file. Since the size of each dataset was small, the training 

parameters were modified in order to conduct more mutation. 300 generations with 300 pops were trained. 6 networks 

for 2 targets from 3 pairs of datasets have been trained. For each pair of datasets, 2 networks have been trained with the 

features and targets mentioned in 1.3. 



3. Results 

3.1 Traditional Feed-forward Neural Networks 

Each network was trained and finished within 10 seconds. The training loss and testing loss of 6 neural networks of 2 

targets of 3 datasets are shown as below. 

Target Dataset 1 Dataset 2 Dataset 3 

PHI 0.0455 0.0318 0.0321 

logK 0.0230 0.0270 0.0325 

Table.1. Traditional Feed-forward Neural Networks Training Loss (MSE). Each estimator was trained and tested 10 times. 

The table shows the best results. the max difference between the best and the worst results were 0.0003. 

Target Dataset 1 Dataset 2 Dataset 3 

PHI 0.0555 0.0322 0.0409 

logK 0.0244 0.0291 0.0374 

Table.2. Traditional Feed-forward Neural Networks Testing Loss (MSE). Each estimator was trained and tested 10 times. 

The table shows the best results. the max difference between the best and the worst results were 0.0151. 

 

3.2 Reduced Neural Networks 

The testing loss of 6 neural networks of 2 targets of 3 datasets are shown as below. 

Target Dataset 1 Dataset 2 Dataset 3 

PHI 0.0594 0.0395 0.0649 

logK 0.0328 0.0289 0.0487 

Table.3. Traditional Feed-forward Neural Networks Training Loss (MSE). Each estimator was trained, tested and reduced 

10 times. The table shows the best results. the max difference between the best and the worst results were 0.0205. 

  



3.3 NEAT 

Each network was trained and finished within 5 minutes. The shortest training time was 30 seconds. The training loss and 

testing loss of 6 neural networks of 2 targets of 3 datasets are shown as below. 

Target Dataset 1 Dataset 2 Dataset 3 

PHI 0.0302 0.0112 0.0103 

logK 0.0129 0.0036 0.0106 

Table.4. NEAT Training Loss (MSE). Each estimator (a network for a certain problem) was trained and tested 5 times. 

The table shows the best results. the max difference between the best and the worst results were 0.0238 

Target Dataset 1 Dataset 2 Dataset 3 

PHI 0.0376 0.0108 0.0205 

logK 0.0225 0.0051 0.0114 

Table.5. NEAT Testing Loss (MSE). Each estimator was trained and tested 5 times. The table shows the best results. the 

max difference between the best and the worst results were 0.0514. 

The training result visualization are shown as below. (Since the figures are not intuitive, only 2 figures of the logK – 

Dataset 2 estimator are shown. The other figures of NEAT were saved as files.) 

 

Fig.3. The network trained by NEAT (PHI, Dataset 2). The grey blocks are the inputs (features) and the blue sphere is 

the output (target). The arrow lines are the connections. Green arrow lines pass positive connection and red arrow lines 

pass negative connection. The dotted arrow lines are disabled. 

  



 

Fig.4. The change of pops and types of species with respect to generations (PHI, Dataset 2). Each pattern stands for a 

species. The normal amount of the pops was set as 300. However, 300 species were initially generated. Each species 

had at least 2 pops. Therefore, At the beginning of the evolution, the amount of pops was about 600. 

4. Discussion 

The traditional feed-forward neural networks can predict the two targets with acceptable loss. The estimators (networks 

for a certain problem) were stable. The differences between the performance of the best and the worst estimators were 

small. The reduced network generally maintained the functionality and stability. 

Comparing with the traditional feed-forward neural networks, networks with better performance can be trained with 

NEAT. However, the training time of NEAT was much longer although the training time was unstable (30 seconds ~ 5 

minutes). The unitability was the result of the uncertainty of the species extinction and creation. A generation with fewer 

species requires less calculation. Moreover, the estimators trained by NEAT were unstable. The differences between the 

performance of the best and the worst estimators can be very large (0.0514). Although better estimators can be trained by 

NEAT, some estimator of very low quality can also be generated. 

  



5. Conclusion and Future Work 

Neural networks were trained multiple times with different methods for oil reservoir porosity and permeability prediction. 

The networks trained with tradition back-propagation methods were capable for the prediction of the two targets after 

network reduction. NEAT can generate networks with even lower loss. However, the training time was much longer and 

the performance of the trained networks was more unstable. 

The hyper parameters for NEAT were modified many times in this paper. However, it is probably not the optimal settings 

and further adjustment is necessary. Study has raised are other extended NEAT algorithms including rtNEAT, HyperNEAT, 

etc., which can also be implemented to oil well porosity and permeability predictions. 
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