
Neural Structure Optimization Algorithm on Depression Level
Detection: Casper or Evolutionary Algorithm based Feed-forward

network? ?

Yan Yang1

Australia National University
u6169130@anu.edu.au.com

Abstract. The depression is interesting at the emotional level and can be physically sensed by oth-
ers. Meanwhile, the neural network can effectively detect the depression level by using the statistical
summary of observers’ physiological signals, and [CJ19] achieves 92% accuracy. Cascade network algo-
rithm employing Progressive RPROP (Casper) [TG97] enables self-optimized neural network structures,
where the network topology starts from minimal. In feed-forward neural networks, the structures of
networks need to be defined, which usually relies on the experience. To aid this, we use evolutionary
algorithm to optimize the structure of feed-forward neural network and the hyper-parameters. In this
paper, the two approach are applied to a multi-classification problem, detection of different depres-
sion levels. By large number of experiments, the Casper algorithm outperforms evolutionary algorithm
optimized feed forward neural networks by 4.26% accuracy.

Keywords: Neural Network · Emotion Recognition · Depression detection.

1 Introduction

Depression heavily affects people’s daily life and is a common mood disorder illness [Se15]. Constant feelings
of sadness and loss of interest or enthusiasm on normal daily activity are to be considered as depression. In
the worst case, it can trigger suicidal behaviors. In medical science, depression is not only a low mood but
serious conditions that influence people’s physical and mental health. [CJ19]The good news is the effective
treatment of depression are exists. However, it passes the buck to the detection of depression and it’s level.
While different types of depression exist but can be simply classified by the degree of depression. The manual
diagnosis of depression is subjective and time-consuming while relying on the patients’ subjective feedback.
It increases uncertainty and decreases the accuracy in the measurement of depression. [CJ19] It is necessary
and urgent to propose a reliable depression detection system to assist the doctors in related treatments.

1.1 Motivation

Accompany the improvement in the physiological computing technologies, it has been proofed as a powerful
auxiliary means in the depression diagnosing systems. [Ce16]. The paper investigate the performance of two
different neural network architecture optimization algorithm, Casper and evolutionary algorithm optimized
feed-forward neural networks on depression level detection by using the statistical summaries of observer’s
physiological signals. The Caspar algorithm are designed to adaptively optimize the network topology, where
the structure of the network will be learned during the training. The hyper-parameters are much more less
compared to the traditional feed-forward neural networks. However, the structure of feed-forward neural
networks are predefined before training. Usually, large number of experiments and sophisticated experience
are required to tune a well performed network structures and hyper-parameters. Thus, we use evolutionary
algorithm to aid the shortcomings. The paper investigate the performance comparison between the two
neural structure optimization techniques on depression level detection tasks, also the comparison between
the state of the art models are provided.

1.2 Database

In our experiments, the three databases are collected by [CJ19] has been used. Each of which is collected by
using the different physiological signal sensor. They are Galvanic Skin Response (GSR), Skin Temperature

? Supported by organization of COMP4660 Bio-inspired course group

2 Y. Yang

(ST) and Pupillary Dilation (PD). [CJ19] For the sake of simplicity and clarity, they will be referred as
GSR database, ST database, and PD database respectively in the later chapters. Each of the databases
has 192 instances from 12 subjects. GSR database, ST databases, and PD databases contain 23,39, and
23 features respectively. The (1) minimum, (2) maximum, (3) Mean, (4) standard deviation, (5) variance,
(6) root mean square, (7)(8) means of absolute values of first/second different, and (9)(10)(11) number,
amplitude and ratio of particular signals are used as the statistical summary for each of the signals. Features
are extracted twice based on normalized and unnormalized signal respectively. The age of participant are
spread from 18 to 27 with an average 21.1 and standard deviation of 2.8 [CJ19], and it has a perfectly
balanced distribution on gender. The distribution for the target class of each database is equally spread over
each of the target classes. There are 4 investigated depression categories:

• 0 indicates no or slight depression
• 1 indicates middle-level depression
• 2 indicates strong level depression
• 3 indicates grievous level depression

2 Methodology

The section provides the theory behind our models. The overview of Casper algorithm and evolutionary
algorithm are provided, as well as the evaluation metrics are introduced. The introduction of feed forward
neural network is omitted.

2.1 Casper Algorithm

The Casper [TG97] is a constructive algorithm, which is designed to overcome the bad generalization problem
of Cascor[BF94], a similar cascade neural network architecture. Compare with the traditional neural network,
Casper starts with minimum network topology, then automatic train and add the new hidden units one by
one. Typically, it could learn much more quickly than the traditional feed-forward neural networks.[BF94].
The networks start with minimal typology which does not contain any hidden layers. Then, the network
generates the candidate units which fully connected with all input and existing hidden units, and maximize
the correlation between the neurons connected to it and the residual error. Note, the residual errors refer to
the error between prediction and target in current status. In the next steps, add the candidate units with
maximum correlation to the residual error of networks, and keep the weights. Based on the time to add
weights, it maintains 3 different learning rates as shown below and demonstrated in figure 1.

• L1 rates: new added neuron that connect the latest hidden units with all input and the rest hidden units
• L2 rates: the neuron that connect the latest hidden units with output
• L3 rest of neurons

Fig. 1. The structure of Casper [TG97]

Conventionally, the L1 is much larger than L2 and L3, and L2 is larger than L3. More importantly, the
Casper [TG97] improves the generalization by using the Resilient Backpropagation (Rprop) algorithm with
simulated annealing weights decays as

∂E

∂Wij
=

∂E

∂Wij
−D ∗ sign(wij ∗ w2

ij ∗ 2−T∗Hepoch)

Title Suppressed Due to Excessive Length 3

where D is a hyperparameter, that usually known as decay parameter in the modern optimization algorithm.
The overview of the Caspar algorithm is shown in pseudocode Algorithm 1 and Algorithm 2.

Algorithm 1 Cascade network algorithm employing Progressive RPROP (Casper)

1: Input: threshold, max iter,hpatience, hmax iter
2: net = net initialize() . A minimal network only consisted by input and output layer
3: for iter in max iter do
4: cLoss = net.train() . use RPROP optimizer with Simulated Annealing weight decays
5: if cLoss < threshold then
6: Break
7: end if
8: weights = addHidden(cLoss,hpatience,hmax iter) . Use algorithm 2 to calculate weights for new

hidden units
9: net.addWeights(weights) . maintain three container that represents 3 different learning rates

10: net.update() . update learning rates by updating the aforementioned container
11: end for

Algorithm 2 Add new hidden units to Casper

1: Input: cLoss,hpatience,hmax iter
2: Output: weights
3: net = newNet(candidate) . all inputs and current hidden units fully connected with candidate units
4: X = init() . all inputs and current hidden units
5: previous = INF
6: for iter in max iter do
7: y = net(X)
8: corr = Correlation(cLoss,y) . calculate correlation
9: corr.backward() . updates the net by backpropagation to maximum the correlations

10: current = sum(corr)
11: if previous - current < hpatience then
12: Break
13: end if
14: previous = current
15: end for
16: idx = argmax(ss) . select the most correlated candidates
17: weights = net.weights[idx,:]

By the nature of linear algebra, the linear combination of linear equations is still linear. Thus, we add different
activation functions to the Caspar algorithm in our experiments. The Dropout[Se12] and BatchNormalization
[IS15] are used. The details of experiments will be showed in next section.

2.2 Evolutionary Algorithm

Specifically, we use the generic evolutionary algorithm to optimize our neural network structures and hyper
parameters. Generic evolutionary Algorithm mimics the natural selection for randomly chosen populations
of individuals, to stochastically search for the optimal solutions for given problems. [Eng07]. Firstly, we
define the domain of structures that will be used in the search. Then, we uniformly and randomly initialized
several model structures and the hyperparameters used for training. In the context of evolution, each of them
is know as individuals, and the group is the populations. The fitness of each candidate model\individuals
will be the accuracy on the depression dataset. Then, we use tournament selections, uniform crossover and
uniform mutation to breed the next generations. The details are shown in algorithm 3. The hyper parameters,
crossover method, mutation method and selection method will be justify in the next section.

Algorithm 3 Generic Evolutionary Algorithm for Feed-forward Neural Networks Optimization

1: Input: maxGenerations,num,crossover rate, mutation rate
2: t = 0 . t records the current generations
3: p = initializePopulations() . Random initialization of networks structures and hyper-parameters
4: set(mutation rate)

4 Y. Yang

5: set(crossover rate)
6: set(num) . the number of candidate that used in tournament selection method
7: while t < maxGenerations or stopping criteria not meet do
8: fit = p.fitness() . we use accuracy to represent the fitness value
9: new populations = []

10: while length(new populations) < length(p) do
11: child = tournament selection(p).uniform crossover(tournament selection(p))
12: child.uniform mutate()
13: new populations.append(child)
14: end while
15: p = new populations
16: end while

2.3 Feature Selection

As we mentioned before, the features contain the statistical summary both from normalized and unnormalized
signals. It result in certain number of redundant features. Meanwhile, not every statistical summary of signals
are relevant to the tasks. To deal with this issue, we adopt Min Redundancy Max Relevance (mRMR)[LD05]
to select the most discriminative features. Let S be the set of selected features, and U be the set of candidate
features, then the next selected features will be

arg max
fj∈U

I (fj , c)−
1

|S|
∑
fi∈S

I (fj , fi)

where I stands for the mutual information. During the training of the model, the most discriminate features
sets are selected based on training data, and the number of selected features are tunned by the validation
errors.

2.4 Evaluation

For the sake of fair comparison, we will adopt leave one participant out cross validation strategy which is the
same validation method as [CJ19]. For each iteration in cross validation, this method use all the data for one
human on validation, and training on the rest of data. To validate the effectiveness of the Casper algorithm,
we use the precision, recall, accuracy. And, we use accuracy to evaluate the evolutionary algorithm optimized
feed-forward neural network models. Precision is defined as the percentage of instances that are correctly
predicted for depression level L over the instances that have the depression level L. Recall is the proportion
of instances that are correctly predicted with depression level L over all instances that have depression level
L. Accuracy is defined as the proportion of instances that are correctly predict with depression level L or
non-depression level L.

3 Results and Discussion

All of the experiments are conducted on MacBook Pro 2015 with 2.7 GHz Dual-Core Intel Core i5 pro-
cessor and 8 GB 1867 MHz DDR3 memory. The system versions is 10.15.3 (19D76). The best performed
Casper model [TG97] and evolutionary algorithm optimized feed-forward neural networks are provided in
this section. Note, the GSR databases, PD databases, and ST databases contain the same instances. And,
all features denote concatenating these features into a single feature with the corresponding instance. As a
reminder on hyper parameters settings of Casper, we always initialize 5 candidate hidden neurons and add
the one with highest correlation on residual errors. For the fair comparison, we adopt the same training and
validation strategy as [CJ19], which optimizes the model performance on the validation dataset based on the
feedback on the training dataset. Another reason for excluding the testing dataset is the dataset contains
limited samples.

Title Suppressed Due to Excessive Length 5

3.1 Casper

In current settings, to our best knowledge, we will obtain the best performance Casper model by adding
modern neural network techniques and using mRMR feature selections. We add ReLu activation function,
batch normalization, and dropouts to the Casper model. For every hidden layers, the dropout [Se12] with
probability 0.1 and ReLu activation function are added, while the batch normalization [IS15] are only added
to the first layer of Casper [TG97]. As table 1 shows, the Casper algorithm is able to archive 64.25% accuracy
by using PD databases only.

Macro Precision Macro Recall Accuracy

GSR database 0.6232 0.6933 0.6011

PD database 0.6833 0.6567 0.5925

ST database 0.5364 0.5635 0.5033

All feature 0.6035 0.6732 0.5301
Table 1. Performance Measure for Casper model

3.2 Evolutionary Algorithm Optimized Feed-forward Neural Networks

The domain of structures and hyper parameters for searching are listed below.

1. The number of hidden layers are up to 4.
2. Each hidden layers have 80 hidden neurons at most.
3. The activation function used for the hidden layers are ReLu, Sigmoid, LeaklyRelu or Softplus
4. The number of data in each mini batch are searched from 8 to 32.
5. The optimizer are selected from Adam and RMSprop.
6. The dropout for each hidden layers are 0, 0.1,0.2 or 0.5
7. The learning rate are 0.1, 0.05,0.01,0.005 or 0.001

Note, we will always use cross entropy as the lose functions, and softmax activation function for the output
layers. It is hard to dynamically set the reasonable training epoch to different candidate solutions. As
the fitness score of a candidate solution will be the highest accuracy among the training epochs on the
validation dataset, the large training epoch usually brings more chance to get good performance. Certainly,
the evolutionary algorithm will converge to the candidate solutions with large training epochs. Thus we use
50 epoch every candidate solutions. And if the best fitness scores did not increase for 5 epochs, the evolution
terminates, which means the evolutionary algorithm stuck in the local minimal.

Method Value

Maximum Generation 30
Population Size 15
Tournament Selection 6
Uniform Crossover 0.5
Uniform Mutation 0.05
Stop Condition No Fitness increase for 5 recent Generation

Table 2. Hyper parameters of Evolutionary Algorithm

First Hidden layer Second Hidden layer Third Hidden layer Fourth Hidden layer Other Parameters

neurons activation neurons activation neurons activation neurons activation minibatch optimizer dropout learning rate

GSR database 80 SoftPlus 50 LeakyReLu 30 SoftPlus 30 SoftPlus 16 Adam 0.1 0.001

ST database 70 LeakyReLu 50 ReLu 60 ReLu 40 SoftPlus 16 Adam 0.1 0.01

PD database 60 LeakyReLu 20 LeakyReLu 10 SoftPlus 50 ReLu 24 RMSprop 0.2 0.01

All features 80 ReLu 20 SoftPlus 40 LeakyReLu NA NA 24 RMSprop 0.2 0.005

Table 3. The Structures of Evolutionary Algorithm Optimized Feed-forward Neural Networks

The hyper parameters of the evolutionary algorithm is summarized in table 2. Considering the size of
the databases, that only 192 instances in total. We maintain 15 candidate models (Population Size) in each

6 Y. Yang

generation, and the evolution takes up to 30 generations. The tournament selection with candidate pool size
6 are used since we do not want the bad candidate models (individuals) influence the next generations. While
the uniform cross over with 0.5 probability are used to ensure the sufficient explorations and exploitation,
that the search would not over concentrate on the local area. The uniform mutation with 0.05 probability
is used, that we want the convergence happens within 30 generations. The optimized structures on each
database are shown in table 3, where NA indicates that do not have the layers or activation functions. The
variations of fitness score (accuracy) of each generation is shown in figure 2 and figure 3. As the generations
increases, the average fitness and best fitness among the populations significantly increases. By using ST
databases, the algorithm can achieve up to 53.5% accuracy. The detail performance are shown in next
subsection.

Fig. 2. Best Fitness Variations of Generations on Differ-
ent Datasets

Fig. 3. Average Fitness Variations of Generations on
Different Datasets

3.3 Discussion

Firstly, we want to talk about the training time on Casper. Withing our implementation of Casper [TG97],
the model are not efficient as it reported in the original papers. And, though the convergence of Casper on
hidden neuron selection is fast, it involves a large number of sequential calculations which are unable to be
paralleled. In our experiments, the training time on Casper usually requires more than 20 minutes on the
small dataset, while the Casper is implemented within the Pytorch library. During our investigation, we
would like to conclude that the Casper is not efficient within the modern computers.

In our experiments, the batch normalization [IS15] layer and dropout layer [Se12] consistently increase
the model performance of Casper. For the evolutionary algorithm optimized dense model, the trend of
convergences can be saw in figure 2 and figure 3. Due to the computation and time limits, we do not have
much experiments on the selection of maximum generations, number of populations, and the domain to
search. The result are likely to be improved. Though, the mRMR feature selections increase the model
performance in majority times in our experiments. And, the relative increase of accuracy are shown in table
4. Usually feature selection should be tuned before evolutionary algorithm, but each run requires nearly one
day. Thus, for evolutionary algorithm optimized feed forward neural network, we first search for the best
network architectures and hyper parameters, and then fine tuning the feature selections. The process of
feature selection is computationally expensive, usually requires more time on that than the model training
times. The more time-efficient feature selection method may need to be selected or proposed afterward.
Table 3 below shows the accuracy value for different neural network models on different depression datasets.
The performance reported in [CJ19] significantly beat our best performed models, and referred as Dense
network in the table. Our re-implementation of the model described in [CJ19] is referred as Dense network
2. For self-comparison, except ST database and All features, the Casper model outperforms the evolutionary
optimized feed-forward neural networks both in performance and training times.

https://pytorch.org

Title Suppressed Due to Excessive Length 7

Casper Evolutionary algorithm optimized network

GSR database +0.0061 +0.0125

PD database +0.0175 -0.0034

ST database +0.0401 +0.0235

All features +0.0108 +0.0155
Table 4. Performance increase for feature selections

Casper Dense network Dense network 2 Evolutionary algorithm optimized network

GSR database 0.6011 0.89 0.4115 0.5225

PD database 0.5925 0.87 0.4010 0.4834

ST database 0.5033 0.92 0.3958 0.5585

All features 0.5301 0.92 0.4375 0.5355
Table 5. Accuracy for different Models

4 Conclusion and Future works

In this paper, we investigate the performance of two different neural network architecture optimization
algorithms, Casper [TG97] and evolutionary algorithm optimized feed-forward neural networks on the de-
pression datasets. The Casper algorithm outperforms the evolutionary algorithm optimized feed-forward
neural networks in majority databases.By using the Casper, we can achieve 60.11% accuracy on predicating
the depression level. Also, it proves the effectiveness of using three different physiological signals of observers
in depression diagnose. However, we only explored feature fusion in a single models that all features are con-
catenated before passing to the model. Future work could focus on training three models on GSR databases,
PD databases and ST databases respectively, and the final prediction are fused by different strategy, for
example, hard voting, soft voting and etc. It very likely increase the performance of the model, which will
significantly benefit society. Also, the Casper is no longer to gain the advantage on training time compared
to dense connected neural networks, the Casper have lots of sequential operations which are unable to be
processed at Graphic Unit Processor at once. Future work could also be focusing on the compatibility of
Casper on the modern computation devices.

References

[BF94] S Baluja and SE Fahlman. “Reducing network depth in the cascade-correlation learning architec-
ture”. In: Pittsburgh (1994).

[TG97] Nickt Treadgold and Tom Gedeon. “A Cascade Network Algorithm Employing Progressive RPROP”.
In: International Work-Conference on Artificial Neural Networks (1997).

[LD05] H Peng; F Long and C Ding. “Feature selection based on mutual information criteria of max-
dependency, max-relevance, and min-re- dundancy”. In: IEEE Trans (2005).

[Eng07] Andries P. Engelbrecht. Computational Intelligence An Introduction. EVOLUTIONARY COM-
PUTATION. British Library, 2007. isbn: 9780470035610.

[Se12] Geoffrey E. Hinton; Nitish Srivastava and etc. “Improving neural networks by preventing co-
adaptation of feature detectors”. In: Neural and Evolutionary Computing (2012).

[IS15] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift”. In: Machine Learning (2015).

[Se15] N Cummins; S Scherer and etc. “A review of depression and suicide risk assessment using speech
analysis”. In: Speech Commun (2015).

[Ce16] S Potvin; G Charbonneau and etc. “Self-evaluation and objective assessment of cognition in major
depression and attention deficit disorder: Implications for clinical practice”. In: Compr. Psychiatry
(2016).

[CJ19] Xuanying Zhu;Tom Gedeon;Sabrina Caldwell and Richard Jones. “Detecting emotional reactions
to videos of depression”. In: IEEE International Conference on Intelligent Intelligent Robots and
Systems (2019).

	 Neural Structure Optimization Algorithm on Depression Level Detection: Casper or Evolutionary Algorithm based Feed-forward network?

