Research on the Relationship Between Face and Emotion: Bidirectional Neural Networks

Yu Qiao

School of Computer Science and Engineering Australia National University Email: u6706067@anu.edu.au

Abstract. Among the current existing research on faces and emotions, the data recorded in the real environment is vital for the results. I did experiments with different types of neural networks on a new static facial expression dataset Static Facial Expressions in the Wild. I compared the results of a simple neural networks and bidirectional neural networks. The performance of bidirectional neural networks is better than that of common neural networks.

Keywords: SFEW database, Neural Networks, Bidirectional Neural Networks

1 Introduction

Neural network (NN), also known as artificial neural network (ANN). The artificial neural network basically consists of the following components: Input layer: receive and pass data; Hidden layer; Output layer; Weights between layers. Each hidden layer has an activation function. In this simple neural network, I will use the Sigmoid activation function. As for bidirectional neural network, I am going to use Bi-LSTM.

2 Method

2.1 Description of dataset

In the paper, I solve a classification problem on a given dataset, which has 10 attributes(inputs) and 1 label(output). The numbers (from 1 to 7) in the column of label means angry, disgust, fear, happy, neutral, sad and surprise. 5 of the attributes are Principal Components of Local Phase Quantization (LPQ) features, and the other

2 Yu Qiao

are Principal Components of Pyramid of Histogram of Gradients (PHOG) features. In the first column, they are the source of the data. We have 675 records.

The Figure 2 shows a part of the raw data.

1	A	В	С	D	E	F	G	Н	I	J	K	L
1		label	First 5 Pri	incipal Com	ponents of	Local Phase	e	First 5 Pr	incipal Com	ponents of	Pyramid of	Histogram o
2	Airheads_00	1	-0.0008172	0.0034698	-0.0075171	-0.010912	-0.0054296	0.0095511	0.0067755	0.0035193	-0.0009996	0.0043082
3	AlexEmma_00	1	-0.0019823	-0.000265	0.00016096	-0.010747	0.00082863	-0.0004955	-0.0047233	-0.0053007	2.90E-05	0.0024337
4	AlexEmma_00	1	-0.0030116	0.013759	-0.0087055	0.0019429	0.0061133	0.01235	-0.0044805	-6.89E-05	0.0022386	0.0063954
5	AlexEmma_00	1	0.00022408	0.0048942	-0.0054845	-0.0044262	-0.0098829	-0.0012781	-0.0030751	-0.0022199	0.00015534	0.00037549
6	AlexEmma_00	1	-0.0004422	-0.0023756	-0.0024227	-0.010372	0.0021083	0.00092784	0.00082337	-0.0031689	-0.0039125	0.0051525
7	AlexEmma_00	1	-0.0011055	0.0021197	-0.0032849	-0.0064262	-0.011666	0.0025168	-0.0088354	-0.0023136	-0.0041014	0.001039
8	AlexEmma_00	1	-0.0012627	-0.022519	-0.0037013	-0.0056274	-0.009489	-0.013399	0.0034253	-0.0070648	0.0036605	0.0025155
9	AlexEmma_00	1	-0.0011693	-0.022367	-0.014832	-0.0011779	-0.011345	-0.016939	0.0048949	-0.012611	0.0053144	0.0066979
10	AlexEmma_00	1	0.0020192	-0.0021889	0.0016372	-0.0078953	-0.0076976	0.014068	0.0079642	0.0068933	-0.001063	0.0011439
11	AlexEmma_00	1	-0.0045181	-0.013468	-0.0054261	-0.0030916	-0.0023567	0.010618	0.0068644	-0.0049586	0.0011314	0.0027233
12	AlexEmma 0	1	-0.0026443	-0.0080293	-0 014288	-0.0058553	-0.0030814	-0 01372	0.0063709	-0 0033444	0.00086169	0.0098901

Fig. 1. a part of the raw data

2.2 Method

The steps of building a neural network to solve a classification problem are shown as follows:

2.2.1 Load and process the dataset

The first step is loading the data. Read data from the 'SFEW.xlsx' and delete the first row and column. The Figure 2 shows a part of the data after this step. I adjust the sequence of columns in the original dataset.

F \	1	2	3	4	
0 -0.00	0081724 0	. 0034698 -	0.0075171	-0.010912	-0.005
1 -0. (2863	0019823 -0.	00026502 0	. 00016096	-0.010747	0.0008
2 -0.0 1133	0030116	0.013759 -	0.0087055	0.0019429	0.006
3 0.00 8829	0022408 0	. 0048942 -	0.0054845	-0.0044262	-0.009
4 -0.00 1083	0044217 -0	. 0023756 -	0.0024227	-0.010372	0.002

Fig. 2. The result of the first step

Then, I define a customize torch dataset on it and normalize the input data. The next step is splitting data into training data and testing data. Here, I set training set' size as 80% of the whole dataset. Then, I define a data loader for this neural network. The Figure 3 shows a part of the training set's data after this step.

1	2	3	4	5	6				
7 \									
21 -0.073688	0.766312	-0.365839	-0.354157	-0.125458	0.748789				
0. 110683									
23 -0.036165	-0.703900	0.797962	-0.030212	-0.060189	-0.379244				
0. 916599									
27 -0.044448	-0.530453	0.624059	-0.570240	0.217557	0.720541				
0. 670717									
29 -0.088847	-0.692923	-0.585665	0.357857	0.484181	-1.368021				
1. 244642									
32 -0.132233	-0.861214	-1.098239	0.033736	0.743431	-0.948875				
-0. 464413									
42 -0.053483	-0.697878	0.431025	-1.397657	-0.726993	-0.299768				
Fig. 3. The result of the second step									

2.3 Build the neural network

A simple and basic neural network uses sigmoid as its activation function, Figure 4 shows this function.

Fig. 4. The sigmoid function

The hyper parameters are set as follows: input_size = 10 hidden_size = 50 num_classes = 7 num_epochs = 500 batch_size = 10 learning_rate = 0.1

Then, set the network's initial parameters, forward functions and backward functions. Calculate its loss in each batch of training and update its weight until it converges. The Figure 5 shows the structure of the simple neural network.

4 Yu Qiao

Fig. 5. structure of the simple neural network.

The Figure 6 shows the structure of the Bi-directional neural network.

 ${\bf Fig.}~{\bf 6.}$ the structure of the Bi-directional neural network

I gave a part of my code as follows:

```
)]:
# #data load dataset and delete the first row and col
import x1rd
import numpy as np
import scipy
filename='SFEW.xlsx'
dataset = [ ]
workbook = xlrd.open_workbook(filename)
table=workbook.sheets()[0]
for row in range(table.nrows):
    dataset.append(table.row_values(row))
data=np.array(dataset)
data=np. delete(data, 0, axis=0)
data=np. delete(data, 0, axis=1)
data=pd. DataFrame(data)
cols=list(data)
cols.insert(10, cols.pop(cols.index(0)))
data=data.loc[:,cols]
print(data)
```

The rest you can get from the zip file I uploaded.

3 Results and Discussion

The loss of a simple neural network is shown as Figure 5

5

6 Yu Qiao

The testing accuracy is around 20.98%. The result gave in the paper I cited is 74%. The result I got from the simple neural network was quite bad. That indicates Bidirectional neural networks' performance is better than simple neural networks.

4 Conclusion and Future work

I have shown how a basic ANN trains the model and compared the results with that of the bidirectional neural networks. Bidirectional neural networks' performance is better than simple neural networks. I believe that the Bidirectional neural network has a wider application. In the future, I will adjust the neurons of the hidden layer. I want to explore whether it will improve the accuracy of the bidirectional network.

Reference

- Dhall, A., Goecke, R., Lucey, S., & Gedeon, T. (2011, November). Static facial expressions in tough conditions: Data, evaluation protocol and benchmark. In 1st IEEE International Workshop on Benchmarking Facial Image Analysis Technologies BeFIT, ICCV2011.
- Nejad, A. F., & Gedeon, T. D. (1995, November). Bidirectional neural networks and class prototypes. In *Neural Networks*, 1995. Proceedings., IEEE International Conference on (Vol. 3, pp. 1322-1327). IEEE.