Research on the Relationship Between Face and
Emotion:
Bidirectional Neural Networks

Yu Qiao

School of Computer Science and Engineering
Australia National University
Email: u6706067@anu.edu.au

Abstract. Among the current existing research on faces and emotions, the data
recorded in the real environment is vital for the results. | did experiments with
different types of neural networks on a new static facial expression dataset
Static Facial Expressions in the Wild. | compared the results of a simple neural
networks and bidirectional neural networks. The performance of bidirectional
neural networks is better than that of common neural networks.
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1 Introduction

Neural network (NN), also known as artificial neural network (ANN). The artificial
neural network basically consists of the following components: Input layer: receive
and pass data; Hidden layer; Output layer; Weights between layers. Each hidden layer
has an activation function. In this simple neural network, I will use the Sigmoid
activation function. As for bidirectional neural network, I am going to use Bi-LSTM.

2 Method

2.1  Description of dataset

In the paper, | solve a classification problem on a given dataset, which has 10
attributes(inputs) and 1 label(output). The numbers (from 1 to 7) in the column of
label means angry, disgust, fear, happy, neutral, sad and surprise. 5 of the attributes
are Principal Components of Local Phase Quantization (LPQ) features, and the other
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are Principal Components of Pyramid of Histogram of Gradients (PHOG) features. In
the first column, they are the source of the data. We have 675 records.
The Figure 2 shows a part of the raw data.
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2.2 Method

Fig. 1. a part of the raw data

The steps of building a neural network to solve a classification problem are shown as

follows:

2.2.1 Load and process the dataset

The first step is loading the data. Read data from the ‘SFEW xIsx’ and delete the
first row and column. The Figure 2 shows a part of the data after this step. | adjust the
sequence of columns in the original dataset.
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Then, | define a customize torch dataset on it and normalize the input data. The
next step is splitting data into training data and testing data. Here, I set training set’
size as 80% of the whole dataset. Then, | define a data loader for this neural network.
The Figure 3 shows a part of the training set’s data after this step.
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1 2 3 4 2 6
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21 -0.073688 0.766312 —0.365839 —0.354157 —0. 125458 0. 748789

0.110683
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0.916599
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42 —0.053483 —0.697878 0.431025 —1.397657 —0. 726993 —0. 299768
Fig. 3. The result of the second step
2.3 Build the neural network

A simple and basic neural network uses sigmoid as its activation function, Figure 4
shows this function.

Fig. 4. The sigmoid function

The hyper parameters are set as follows:

input_size = 10

hidden_size =50

num_classes = 7

num_epochs = 500

batch_size = 10

learning_rate = 0.1

Then, set the network’s initial parameters, forward functions and backward
functions. Calculate its loss in each batch of training and update its weight until it
converges. The Figure 5 shows the structure of the simple neural network.
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Fig. 5. structure of the simple neural network.

The Figure 6 shows the structure of the Bi-directional neural network.

Fig. 6. the structure of the Bi-directional neural network

I gave a part of my code as follows:



BHRVER “TFER” ETRH title M TEAE M BRIISCFE.

)] : | # #data load dataset and delete the first row and col
import xlrd
import numpy as np
import scipy
filename= SFEW. xlsx’
dataset = [ ]
workbook = xlrd. open workbook (filename)
table=workbook. sheets () [0]
for row in range(table. nrows) :
dataset. append (table. row_values (row))

data=np. array (dataset)
data=np. delete (data, 0, axis=0)
data=np. delete (data, 0, axis=1)

data=pd. DataFrame (data)
cols=list(data)

cols. insert (10, cols. pop(cols. index (0)))
data=data. loc[:, cols]
print (data)

The rest you can get from the zip file | uploaded.

3 Results and Discussion

The loss of a simple neural network is shown as Figure 5

215 4

210 4

205 4

200 1

195 +1




6 Yu Qiao

The testing accuracy is around 20.98%. The result gave in the paper | cited is 74%.
The result 1 got from the simple neural network was quite bad. That indicates
Bidirectional neural networks’ performance is better than simple neural networks.

4 Conclusion and Future work

I have shown how a basic ANN trains the model and compared the results with that of
the bidirectional neural networks. Bidirectional neural networks’ performance is
better than simple neural networks. | believe that the Bidirectional neural network has
a wider application. In the future, I will adjust the neurons of the hidden layer. | want
to explore whether it will improve the accuracy of the bidirectional network.
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