
Reduction of Hidden Units and Parameters in Deep Neural Networks 

Tian Huang 

 

Research School of Computer Science, 

the Australian National University 

u6343091@anu.edu.au 

Abstract: Deep neural network is a helpful deep learning method and can help people solve 

different kinds of problems. However, it is very difficult to decide the dimension of hidden layers. 

Too many parameters can slow down the run-time of training a network. In this paper, I am going 

to talk about two methods to prune unnecessary hidden units. Hidden units that have low 

contributions to outputs or fixed output will be pruned. And later, I will extend this method to 

prune unnecessary parameters using a method in deep learning called partial connection. Another 

method is to combine hidden units whose distinctiveness are similar by comparing vectors consist 

of outputs or parameters. I am going to build a deep neural network using two methods. The 

dataset I used to examine two methods is Breast Cancer Wisconsin (Diagnostic) Data Set collected 

by University of Wisconsin. The result shows that using these two methods can decrease run-time 

by 16.56% and 45.32% while the accuracy only increases by 0.0% and 0.58%.  

Keywords: Deep Neural Network, Reduction, Prune, Partial connection, Hidden Units, 

Parameters, Contribution, Similarity, Run-Time, Training Time 

1. Introduction 

Deep neural networks (DNNs) are very useful tools to solve classification and regression problem. 

However, there are two major problems in DNNs: overfitting and computation time. In this paper, I 

will focus on reducing computation time while not having great change on accuracy. 

The dimension of the input layer and output layer can be easily decided. However, it is a lot more 

difficult to decide the dimension of the hidden layer. If the dimension is too small than the ideal value, 

the accuracy of prediction can be low. On the other hand, if it is larger, it takes a long time to train the 

network and takes more memory to store the network. So, it is very important to find an ideal value for 

the dimension of the hidden layer. 

A solution to this problem is that we can assume a relatively large number of hidden units. An 

empirical and brief dimension of hidden layers is equal to the dimension of the input layer. Then I can 

start to prune the unnecessary hidden units in the neural network. In this paper, two methods will be 

used. One is to prune a unit whose weights linking to output are all zero, very ‘small’ [2]. Using 

product of weights and outputs of the last layer to compare, it is easy to find them. Moreover, with bias 

included, hidden units with fixed outputs are identified. Later I will extend this method to prune 

parameters using partial connection [1], a method similar to sparse connectivity in convolutional 

neural network. Another is to remove those hidden units that are similar. We can form vectors using the 

output of each hidden units and compare their distinctiveness calculating the angle between vectors [2]. 



If the angle is close to specific degrees, such as 0 degrees or 180 degrees, I can remove it because two 

hidden units will stay the same in the training process afterwards. 

The figures in the paper are presenting simple neural networks, but the technique stated are 

applicable to DNNs. The experiment is also conducted on a 4-layer deep neural network. 

2. Method 

2.1 Basic (deep) nerual networks and variables mentioned in the paper 

  

Figure 1 – A classical neural network. Although is a simple neural network, it works the same as DNN. 

(Figure is generated with Graphviz) 

Assume I have a neural network as the one shown in figure 1. I1, I2, I3 are 3 input units. H1, H2, H3, 

H4, H5 are 5 hidden units. O1 and O2 are 2 output units. I call these three layers as layer 0, layer 1 and 

layer 2. Between each two units from adjacent layers, there is a weight. The weights between i th unit 

of layer n-1 and j th unit of layer n which is at the behind is called 𝑤𝑛𝑖𝑗 . The bias of i th unit of layer n 

is called 𝑏𝑛𝑖. The output of i th unit of layer n is called 𝑧𝑛𝑖 and its corresponding value after activation 

function is applied is called 𝑎𝑛𝑖. Dimension of layer n is called 𝑑𝑛. 

  As is suggested above, the output of each unit and the output modified with activation function is 

applied can be calculated using formulas below. 

 

𝑧𝑛𝑖 =  ∑ 𝑤𝑛𝑗𝑖 ∗

𝑑𝑛−1

𝑗=0

 𝑎(𝑛−1)𝑗 + 𝑏𝑛𝑖 

𝑎𝑛𝑖 = 𝑎𝑐𝑖𝑡𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑧𝑛𝑖) 

(1) 

 



2.2 Prune hidden units with zero or fixed output and parameters (weights) with small contribution 

to the output 

Prune hidden units with output close to zero 

If 𝑎𝑛𝑖 is too small compared to other 𝑎𝑛𝑗 (j = 0 … 𝑑𝑛), I can judge that 𝑧(𝑛+1)𝑖  will not change a lot 

if the hidden units corresponding to 𝑎𝑛𝑖 do not exist [2]. This hidden units will be marked as 

unnecessary hidden units and can be pruned. This will reduce training time because in the further 

forward propagation and backward propagation process, hidden units are reduced. This means less 

calculations. 

Prune hidden units with fixed output 

Cause the output of each unit 𝑧𝑛𝑖 equals to the sum of prothe duct of weights and output of lasthe t 

layer ∑ 𝑤𝑛𝑗𝑖 ∗
𝑑𝑛−1
𝑗=0  𝑎(𝑛−1)𝑗 plus bias 𝑏𝑛𝑖 and bias 𝑏𝑛𝑖 is a fixed number with no relationship with 

output of last layethe r 𝑎(𝑛−1)𝑡ℎ𝑒 𝑗. If the sum of product ∑ 𝑤𝑛𝑗𝑖 ∗
𝑑𝑛−1
𝑗=0  𝑎(𝑛−1)𝑗 is too small compared 

to bias 𝑏𝑛𝑖, 𝑧𝑛𝑖 can be viewed as a fixed number 𝑏𝑛𝑖 (𝑧𝑛𝑖 = 𝑏𝑛𝑖). Its contribution in the next layer is 

calculated as below. 

 

𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 = 𝑤(𝑛+1)𝑖𝑘 ∗  𝑎𝑛𝑖 = 𝑤(𝑛+1)𝑖𝑘 ∗  𝑎𝑐𝑖𝑡𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑧𝑛𝑖)  ≈  𝑤(𝑛+1)𝑖𝑘 ∗

𝑎𝑐𝑖𝑡𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑏𝑛𝑖) (k in 0 … 𝑑𝑛+1) 

(2) 

 

This is also a fixed number and can be replaced by bias in the next layer 𝑏(𝑛+1)𝑘. Only thing we 

need to do is to add 𝑤(𝑛+1)𝑖𝑘 ∗ 𝑎𝑐𝑖𝑡𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑏𝑛𝑖) to 𝑏(𝑛+1)𝑘. Then we can prune this hidden 

unit. 

 

Figure 2 – A neural network after pruning unnecessary hidden unit H4 (Figure is generated with 



Graphviz) 

Prune parameters (weights) with little contributions to output 

Similar to the method stated above, if we extend this to bias in the hidden units, we can prune 

parameters (weights) that have little contribution to the output of its hidden unit it is in. For example, if 

𝑤𝑛𝑘𝑖 ∗  𝑎(𝑛−1)𝑘 (𝑑𝑛−1 ≥ k) is always very small compared to other 𝑤𝑛𝑗𝑖 ∗  𝑎(𝑛−1)𝑗. Then the output 

of this hidden unit can be calculated as below. 

 

𝑧𝑛𝑖 =  ∑ 𝑤𝑛𝑗𝑖 ∗

𝑑𝑛−1

𝑗=0

 𝑎(𝑛−1)𝑗 + 𝑏𝑛𝑖  ≈   ∑ 𝑤𝑛𝑗𝑖 ∗

𝑘−1

𝑗=0

 𝑎(𝑛−1)𝑗 + ∑ 𝑤𝑛𝑗𝑖 ∗

𝑑𝑛−1

𝑗=𝑘+1

 𝑎(𝑛−1)𝑗 + 𝑏𝑛𝑖 

(3) 

 

But how can I prune parameters? I use partially connected neural networks [1]. This is a method 

similar to “sparse connectivity” in convolutional neural networks. Compared to traditional fully 

connected neural network, not every unit between adjacent layers have weights. Figure 3 shows how a 

partially neural network is like. 

 

Figure 3 – A partially connected neural network with several weights removed (Figure is generated 

with Graphviz) 

The benefit of partially connected neural network is that it with less parameters and takes less memory 

to store the network. It takes less time to train the neural network [1]. 



2.3 Combine hidden units similar to other hidden units in the same layer 

Measuring distinctiveness using vectors consist of output of hidden layers 

Suggested we have n examples of input, for a hidden layer consists of 𝑑ℎ𝑖𝑑  hidden units, I can create 

𝑑ℎ𝑖𝑑  vectors with n dimension. I can calculate the angle between vectors using formula below. 

 

𝑣𝑒𝑐𝑡𝑜𝑟1 = (𝑣1.1, 𝑣1.2, … , 𝑣1.𝑛), 𝑣𝑒𝑐𝑡𝑜𝑟2 = (𝑣2.1, 𝑣2.2, … , 𝑣2.𝑛), 

𝑎𝑛𝑔𝑙𝑒 < 𝑣𝑒𝑐𝑡𝑜𝑟1, 𝑣𝑒𝑐𝑡𝑜𝑟2 > =  
𝑣1.1 ∗ 𝑣2.1 + 𝑣2.1 ∗ 𝑣2.2 + ⋯ + 𝑣1.𝑛 ∗ 𝑣2.𝑛

√𝑣1.1
2 + 𝑣1.2

2 + ⋯ + 𝑣1.𝑛
2 ∗   √𝑣2.1

2 + 𝑣2.2
2 + ⋯ + 𝑣2.𝑛

2
 

(4) 

 

  The hidden units that are similar will have the same process of forward propagation and back 

propagation in further training [2]. This makes no sense if two hidden units are almost same and 

training them separately.  

  The process of combination is based on the feature of the activation function. Different activation 

functions have a different way to combine. Activation functions like tanh or sigmoid function which 

have only one center of symmetry can combine the hidden units that angle is 0 degrees or 180 degrees 

and whose norm √𝑣1.1
2 + 𝑣1.2

2 + ⋯ + 𝑣1.𝑛
2  and √𝑣2.1

2 + 𝑣2.2
2 + ⋯ + 𝑣2.𝑛

2  are the same. Linear 

functions like ReLU or Leaky ReLU do not have to ensure they have same northe m because they have 

unlimited centers of symmetry. I only have to ensure their angles are 0 degrees or 180 degrees. 

 

Hidden 

unit 

index 

0 1 2 3 4 5 

11 4.547818e+01 43.436955 134.339205 90.596161 142.836400 137.665853 

12 1.025003e+02 105.116329 128.906264 5.221897 83.908833 75.523460 

13 1.603309e+02 164.458962 59.659853 64.105617 24.065815 15.510054 

14 1.478021e+02 148.079714 51.208168 77.079853 30.654025 32.778888 

15 5.052720e+01 50.606886 73.611691 161.574199 118.340211 131.154020 

16 1.596214e+01 16.923466 119.128559 119.431443 154.514514 165.756427 

Table 1 – An example of the angle between vectors consist of the output of different hidden units from 

the same layer 

 

As can be seen from the table, the angle between hidden unit 5 and hidden unit 16 is 165.75 degrees 

which are close to 180 degrees. If these two hidden units are combined, both two hidden layers will be 

pruned. The angle between hidden unit 3 and hidden unit 12 is 5.22 degrees which are close to 0 degrees. 

If these two hidden units are combined, the weight of one hidden units will be doubled and another will 

be pruned. 



Measuring distinctiveness using vectors consist of weights of hidden layers 

In the previous method, I use vectors consist of the output of hidden layers to measure their 

distinctiveness. But there are some problems. Some vectors consist of output may not show the 

distinctiveness. For example, below is a series of data.  

 

𝑧1.1 = 1 ∗ 𝑎0.1 + 2 ∗ 𝑎0.2 + 3 ∗ 𝑎0.3 + 3 

𝑧1.2 = 3 ∗ 𝑎0.1 + 2 ∗ 𝑎0.2 + 1 ∗ 𝑎0.3 + 3 

example1: 𝑎0.1 = 1, 𝑎0.2 = 1, 𝑎0.3 = 1 

example2: 𝑎0.1 = −1, 𝑎0.2 = −1, 𝑎0.3 = −1 

𝑣𝑒𝑐𝑡𝑜𝑟1.1 = (9, −3), 𝑣𝑒𝑐𝑡𝑜𝑟1.2 = (9, −3) 

𝑎𝑛𝑔𝑙𝑒 < 𝑣𝑒𝑟𝑐𝑡𝑜𝑟1.1, 𝑣𝑒𝑐𝑡𝑜𝑟1.2 > = arccos (
9 ∗ 9 + (−3) ∗ (−3)

√92 + (−3)2 ∗ √92 + (−3)2
) =  arccos (1) = 0 

(5) 

 

  The angle between two hidden units is 0 degrees. Accordingly, I think their distinctiveness is 0. 

However, if I investigate how 𝑧1.1 and 𝑧1.2 are calculated, they are totally different. Using vector 

consist of output can be disturbed by special data. 

  An improvement is using vectors consist of weights and bias. Because weights and bias will not be 

disturbed by special data and can represent the features of hidden units. Another benefit is that, usually, 

the number of examples is larger than the number of hidden units. Using weights and bias can reduce 

the dimension of vectors, saving run-time and memory. 

3. Dataset 

The data used in the experiment is Breast Cancer Wisconsin (Diagnostic) Data Set collected by 

University of Wisconsin. It has 30 real-valued input features and the diagnosis and 569 instances. 70% 

of instances are used for training and 30% for testing. The purpose of this dataset to classify whether 

tumor is benign one or malignant one. 

Preprocess of this dataset is to change "Malignant" to “1” and "Benign" to “0” and rescale (normalize) 

the data from 0 to 1. 

4. Results and Discussion 

This experiment runs on a computer with Intel i7-7700HQ, 16GB main memory, windows 10 operating 

system and runs with jupyter notebook. 

  The experiment runs on 4 models, one without any new methods used [3], one with the first method, 

one with the second method and one with both methods. Four models are all built with a 4-layer DNN. 

Dimension of input and output layer are 30 and 1. Every dimension of hidden layer is 30. So, there are 

90 hidden units and 2730 weights. I will examine how well models work by comparing their training 

time (run-time) and accuracy. This is only 1 hidden layer in the network with a dimension of 30 (the 

dimension of input). 

 



 Model 1 [3] 

(without new 

method) 

Model 2 

(with two 

methods) 

Model 3 

(with the method 

stated in 2.2) 

Model 4 

(with the method 

stated in 2.3) 

Hidden units 

pruned 

because low 

contribution 

0 31 31 0 

Hidden units 

pruned 

because low 

distinctivene

ss 

0 19 0 47 

Parameters 

(weights) 

because low 

contribution 

0 47 50 0 

Run-time 

(training 

time) 

(seconds) 

10.1997046470642

09 

5.1173086166381

84 

8.510229825973

51 

5.5770711898803

71 

Time saved NA 49.828855 % 16.563958 % 45.321248 % 

Accuracy 2.339181 % 2.923977 % 2.339181 % 2.923977 % 

Change on 

accuracy 

0 % 0.584796 % 0 % 0.584796 

Table 2 – Result of an experiment using different models applied to same DNN 

 

The model 1 is used the neural network stated in the paper of W.N. Street, W.H. Wolberg and O.L. 

Mangasarian published in 1993. But I modified the neural network and make it in the same structure of 

neural network so that the comparison makes sense. 

  The result shows that run-time is reduced with only limited influence on accuracy. The methods work 

for this classification problem and dataset. 

5. Conclusion and Future Work 

The result of the experiment shows that pruning hidden units with zero or fixed output, parameters 

(weights) with a small contribution to the output, and similar with other hidden units (low distinctiveness) 

can reduce training time without having great change on accuracy. Using partial connection and vectors 

consist of weight and bias make these two methods to function better. 

  Because how is the network shaped, reduction of parameters has a limited improvement in training 

time (only 50 out of 2730 weights are pruned) although the partially connected neural network is applied. 

Future work can be work on how to improve the network and pruning algorithms to suit this method 

better. 



6. References 

[1] Elizondo, D., & Fiesler, E. (1997). A Survey of Partially Connected Neural Networks. International 

journal of neural systems, 8(5-6), pp. 535 - 558. doi:10.1142/S0129065797000513 

[2] Gedeon, D. T., & Harris, D. (1991). Network reduction techniques. Conference on Neural Networks 

Methodologies and Applications, 1, pp. 119-126. doi:10.1371/journal.pone.0103006.g001 

[3] Mangasarian, O., Street, W., & Wolberg, W. (1993). Nuclear feature extraction for breast tumor 

diagnosis. International Symposium on Electronic Imaging: Science and Technology, 1905, pp. 

861-870. doi:10.1117/12.148698 


