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Abstract. Neural networks can be computationally and storage wise expensive as it may require 

massive computations and a number of neurons split among multiple layers. Such high 

computational and storage resources requirements would restrict its use to selective systems. Thus, 

it’s important that a NN can be pruned to make it more computationally and storage efficient.  

 

A lot of techniques have been proposed and worked on, in this direction. This paper follows a 

approach to pruning neural network by taking into account unit vector angles between the hidden 

layer neurons outputs and eliminating those with similar or opposite contributions. Feature 

Selection has also been implemented using autoencoder making the network even more efficient 

while maintaining the accuracy. The experiment was conducted using a three-layer NN which as 

trained and tested using a stock market dataset. The experiment managed to reduce the size of the 

network by almost more than 36% while maintaining an accuracy of 70% in most of the cases 

which was not better than the referenced paper.  
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1 Introduction 
 
Neural Networks have become a default standard when it comes to applications in the field of computer vision, speech 

recognition or Natural Language Processing [1] . Furthermore, the flexibility of neural network models while handling 

complex data patterns, made it suitable for use in fields of economics and econometrics [2]. However, this increased use 

of neural networks, also resulted in the drastic increase in the size of networks, from less than 1M parameter to classify 

handwritten digits in 1998 [3] to 60M parameters used by Krizhevsky to win ImageNet competition in 2012 [4]. 

 

While this increase in size was directly proportional to increase in the computational power and accuracy of neural 

networks, there was a downside to it as well. These large networks consume considerable computational and memory 

resources, which makes it becomes prohibitive for embedded mobile applications [1]. Also, the flexibility of NN models 

which made them suitable for financial data, comes with a downside of overfitting. Figure 1, briefly depicts the 

comparison of energy costs of basic arithmetic and memory operations in a 45nm CMOS process. So, if we take example 

of Krizhevsky’s NN that won him ImageNet in 2012, running a 60M connection neural network, say at 20Hz will cost 

(20Hz) (0.6G) (640pJ) = 7.6W for DRAM access, which is beyond the capacity of a typical mobile device. So, for running 

these large NNs on mobile devices, it is important to have faster/smaller networks. 

 

 
Figure 1: Energy table for 45nm CMOS process [Mark Horowitz. Energy table for 45nm process, Stanford VLSI wiki]. Memory 

access is 3 orders of magnitude more energy expensive than simple arithmetic. [1] 



 

 

 
Pruning neural networks is an old idea going back to 1990 [5] and determining the structures of the NNs has always 

remained a serious issue [3]. Therefore, number of researcher and organization have worked for pruning the NNs and 

various methods have been proposed for the same [6] [7]. In this paper, the method of reducing the hidden layer neuron 

connection on the basis of distinctive property [8]  of hidden units have been used. Also, a descriptive technique for 

reducing the number of input features, have also been considered in the experiment conducted. The Experiment was 

performed on a set of 751 patterns of Weekly stock data for Dow Jones Index, comprising the data reported by the major 

stock exchanges [9].   

 

 
Figure 2: Each record (row) is data for a week.  Each record also has the percentage of return that stock has in the following week 

(last column) (percent_change_next_weeks_price). 

 
The goal of this exercise is to predict the percentage change of the stock price for the next week based on the last week’s 

performance of that stock and maintain the accuracy of the results while applying the above stated network reduction 

technique. For this experiment, a simple neural network model consisting of three layers, an input layer, a hidden layer, 

and an output layer have been used. Also, as actual target data (percent_change_next_weeks_price) we use, is in the form 

of percentage_change/100, it has been converted to percentage_change/10 for the ease of target classification. 

Furthermore, the name of the stock exchanges has been given numerical values, for the ease of computation. 

 

 

2 Method 

 
The methods used in this exercise to prune the network involves pruning of the network both on the hidden layer as well 

as the input layer. Pruning at both the layers involve four stages as shown in figure 3. First, we start with training the 

neural network via normal training. The second step involves analysing the results to find the units that do not contribute 

much in the final results. Now, the techniques used to find, which connections and units can be pruned will be explained 

later in this section. The third step is to re-train the new pruned network, as shown in figure 4 and the last step is to analyse 

the results. This last step is of great importance, as we want to prune the network but at the same time, we want to maintain 

the accuracy. The experiment was conducted using a 3-layer artificial NN with the learning rate of 0.25 and initial hidden 

layer size of 50 neurons. Sigmoid activation function was used for hidden layer units and resilient propagation (Rprop) 

optimisation is used. 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

 
           Figure 4: Pruning from Fully Connected to Sparsely  

                          Connected 

 

 
 

Figure 3: Four Step Training 



 

 

 
 

 

 

 

2.1 Pruning Hidden layer connections and units 

 
Hidden layer connections and units are pruned on the basis of distinctiveness of the hidden units illustrated by Gedeon & 

Harris [8]. Distinctiveness of hidden units is calculated using the unit output activation vector over the pattern presentation 

set [8]. In this method, for each hidden unit, a unit vector of the output of the activation, of dimensionality equal to the 

size of the training dataset i.e. number of the patterns or instances provided in the training set is constructed. Here each 

component of the unit vector represents the functionality of the hidden unit in the input pattern space [8]. Then based on 

either, the angle between the unit vectors of the units, as shown in figure 5 or, the size of activation vector, decisions were 

made regarding the relevance of a specific unit in the hidden layer. 

 

 

 

 

 

 

 

 

 

 

 

 
              Figure 5: Pair of hidden layer units and their respective unit vector angles 

 
The decisions regarding the relevance of a unit in hidden layer was made through the three major observations stated 

below: 

1. If a unit have a short activation vector in the pattern space, it can be considered insignificant and can be removed. 

2. If the angle between the unit vectors of two units is less than 15º, then the units can be considered having similar 

functionality and one of them can be removed. 

3. If the angle between the unit vectors of two units is more than 165º, then the units can be considered having 

complimentary functionality and both of them can be removed. 

 
Now, that we know the connections to prune, the weights of the corresponding network connections are updated to make 

sure that irrelevant hidden units get zero weight. The weight distribution curves in figure 6 and 7, shows the distribution 

of weights among the connections from input layer to hidden layer before and after the weights have been updated to 

prune the network. 

 

 

 

 

 

 

 

 

 

 

 
               Figure 6: Weight Distribution before pruning                                  Figure 7: Weight Distribution after pruning 

 
 

2.2 Pruning Input layer units 

 
Input features are pruned by using autoencoder. An autoencoder is a multi-layer network where the aim of hidden layer 

is to reconstruct the input data at the output layer which means the hidden layer have to extract the most relevant 

information. This encoding and then decoding of the input feature forces the autoencoder to engage in dimensionality 

reduction. For this experiment, a 3-layer autoencoder was used with the hidden layers having variable units which were 

then fed as input features to the NN for stock market prediction.  



 

 

 

For Both pruning at the input layer and hidden layer, the network is re-trained and tested on variable values of learning 

rate, batch size and number of epochs, to test and compare the accuracy and error rate of the reduced/pruned neural 

network to the one before pruning. Also, the training and testing set for the experiment was randomly split in ratio of 80% 

and 20%, respectively. 

 

 

                

3 Results and Discussion 
 
3.1 Results and Evaluation of Pruning at hidden Layer 

 
Experiment conducted to prune the Hidden layer inputs on the basis of distinctive property showed some promising 

results. The trade-off curve between accuracy Loss and percentage of hidden units removed after re-training is shown in 

Figure 8. The accuracy did not drop much when the incoming and outgoing connections from the hidden layer units, that 

were found to be irrelevant, were removed from the network. This shows that these units did not contribute much in final 

results. Also, the results highlighted the importance of re-training, as the accuracy dropped much faster when the model 

is not re-trained on the reduced NN. 

 

              

  

  

 

 

 

 

 

                  

                                
 

 

 

Figure 8: Accuracy Loss and Hidden layer Units Removed Trade-off 

 
The Reduced Network after pruning the hidden layer, left a network that have 28% less connections, with almost no 

accuracy drop. 

 
3.2 Results and Evaluation of Pruning at Input Layer 

 
Experiment conducted to prune the features that is feed as input in the neural network using the autoencoder technique 

showed some promising results. The trade-off curve between accuracy Loss and percentage of input features 

summarised/reduced by the autoencoder after re-training is shown in Figure 9.  

The accuracy of the network did not drop much fast when the input features were summarised by the autoencoder to 75% 

of the total input features, but it dropped faster when the input features were summarised even further by the autoencoder 

    

   

 

 

 

 

 

 

 
                                                                   
 

                                 

 

 
 

Figure 9: Accuracy Loss and Input Features Removed Trade-off 



 

 

 
Surprisingly, the accuracy increased by a small percentage when we summarised the input features by 15%. This shows 

that using more meaningful features can actually improve the accuracy for classification tasks. The experiments showed 

that, the input layer pruning using autoencoder technique can further reduce the network by 5% with a small increase in 

the accuracy and the network can be reduced further by 7% with almost 5% accuracy loss. 

 

The results shown above clearly depicts that the neural networks can be reduced using the above used techniques, but 

there are other techniques like, Pruning using the concept of incremental contribution of explanatory variable [2] [10] 

which showed better results on a similar kind of economic dataset. Also, creating a taxonomy of undesirable units [8] and 

then pruning on the basis of it rather than only relying on the distinctiveness of the hidden units can also give better 

results. 

 

4 Conclusion and Future Work 

 
A novel approach to reduce/prune a neural network by reduction both at hidden layer level and input layer level have been 

shown in this paper. The above explained experiment proves that the used techniques give good results for network 

reduction/pruning. The explained methods, allowed us to reduce 36% of the network connections while maintaining the 

accuracy of the network on the test set, which was 70% in most of the cases. Note that these values can differ for different 

datasets and for different network configurations. Also, the experiment also showed that the above used network was 

pruned by almost 15% with a small increase in the accuracy when using autoencoder technique. 

 

I end with listing some topics for further research. An Extension of finding irrelevant units and then pruning them would 

be, to be able to rank the hidden units on the basis of their contribution and then performing iterative pruning on them 

[11]. In this scenario, I would like to work on multi-layer networks in comparison to three-layer network used in this 

paper, so as to be able to compare the percentage of pruning based on how deep the layer is in the network [12]. 

Furthermore, I will also like to implement a variational autoencoder and denoising autoencoder, and a combination of 

these two type to see if that improves the performance even further and to what extent. 
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