

Neural Network pruning using hidden layers output’s unit vector

angles and autoencoder for feature selection

Aman Kawatra

Research School of Computer Science

Australian National University

Acton, ACT

Australia

Abstract. Neural networks can be computationally and storage wise expensive as it may require

massive computations and a number of neurons split among multiple layers. Such high

computational and storage resources requirements would restrict its use to selective systems. Thus,

it’s important that a NN can be pruned to make it more computationally and storage efficient.

A lot of techniques have been proposed and worked on, in this direction. This paper follows a

approach to pruning neural network by taking into account unit vector angles between the hidden

layer neurons outputs and eliminating those with similar or opposite contributions. Feature

Selection has also been implemented using autoencoder making the network even more efficient

while maintaining the accuracy. The experiment was conducted using a three-layer NN which as

trained and tested using a stock market dataset. The experiment managed to reduce the size of the

network by almost more than 36% while maintaining an accuracy of 70% in most of the cases

which was not better than the referenced paper.

Keywords: Neural Network, Autoencoder, Network pruning

1 Introduction

Neural Networks have become a default standard when it comes to applications in the field of computer vision, speech

recognition or Natural Language Processing [1] . Furthermore, the flexibility of neural network models while handling

complex data patterns, made it suitable for use in fields of economics and econometrics [2]. However, this increased use

of neural networks, also resulted in the drastic increase in the size of networks, from less than 1M parameter to classify

handwritten digits in 1998 [3] to 60M parameters used by Krizhevsky to win ImageNet competition in 2012 [4].

While this increase in size was directly proportional to increase in the computational power and accuracy of neural

networks, there was a downside to it as well. These large networks consume considerable computational and memory

resources, which makes it becomes prohibitive for embedded mobile applications [1]. Also, the flexibility of NN models

which made them suitable for financial data, comes with a downside of overfitting. Figure 1, briefly depicts the

comparison of energy costs of basic arithmetic and memory operations in a 45nm CMOS process. So, if we take example

of Krizhevsky’s NN that won him ImageNet in 2012, running a 60M connection neural network, say at 20Hz will cost

(20Hz) (0.6G) (640pJ) = 7.6W for DRAM access, which is beyond the capacity of a typical mobile device. So, for running

these large NNs on mobile devices, it is important to have faster/smaller networks.

Figure 1: Energy table for 45nm CMOS process [Mark Horowitz. Energy table for 45nm process, Stanford VLSI wiki]. Memory

access is 3 orders of magnitude more energy expensive than simple arithmetic. [1]

Pruning neural networks is an old idea going back to 1990 [5] and determining the structures of the NNs has always

remained a serious issue [3]. Therefore, number of researcher and organization have worked for pruning the NNs and

various methods have been proposed for the same [6] [7]. In this paper, the method of reducing the hidden layer neuron

connection on the basis of distinctive property [8] of hidden units have been used. Also, a descriptive technique for

reducing the number of input features, have also been considered in the experiment conducted. The Experiment was

performed on a set of 751 patterns of Weekly stock data for Dow Jones Index, comprising the data reported by the major

stock exchanges [9].

Figure 2: Each record (row) is data for a week. Each record also has the percentage of return that stock has in the following week

(last column) (percent_change_next_weeks_price).

The goal of this exercise is to predict the percentage change of the stock price for the next week based on the last week’s

performance of that stock and maintain the accuracy of the results while applying the above stated network reduction

technique. For this experiment, a simple neural network model consisting of three layers, an input layer, a hidden layer,

and an output layer have been used. Also, as actual target data (percent_change_next_weeks_price) we use, is in the form

of percentage_change/100, it has been converted to percentage_change/10 for the ease of target classification.

Furthermore, the name of the stock exchanges has been given numerical values, for the ease of computation.

2 Method

The methods used in this exercise to prune the network involves pruning of the network both on the hidden layer as well

as the input layer. Pruning at both the layers involve four stages as shown in figure 3. First, we start with training the

neural network via normal training. The second step involves analysing the results to find the units that do not contribute

much in the final results. Now, the techniques used to find, which connections and units can be pruned will be explained

later in this section. The third step is to re-train the new pruned network, as shown in figure 4 and the last step is to analyse

the results. This last step is of great importance, as we want to prune the network but at the same time, we want to maintain

the accuracy. The experiment was conducted using a 3-layer artificial NN with the learning rate of 0.25 and initial hidden

layer size of 50 neurons. Sigmoid activation function was used for hidden layer units and resilient propagation (Rprop)

optimisation is used.

 Figure 4: Pruning from Fully Connected to Sparsely

 Connected

Figure 3: Four Step Training

2.1 Pruning Hidden layer connections and units

Hidden layer connections and units are pruned on the basis of distinctiveness of the hidden units illustrated by Gedeon &

Harris [8]. Distinctiveness of hidden units is calculated using the unit output activation vector over the pattern presentation

set [8]. In this method, for each hidden unit, a unit vector of the output of the activation, of dimensionality equal to the

size of the training dataset i.e. number of the patterns or instances provided in the training set is constructed. Here each

component of the unit vector represents the functionality of the hidden unit in the input pattern space [8]. Then based on

either, the angle between the unit vectors of the units, as shown in figure 5 or, the size of activation vector, decisions were

made regarding the relevance of a specific unit in the hidden layer.

 Figure 5: Pair of hidden layer units and their respective unit vector angles

The decisions regarding the relevance of a unit in hidden layer was made through the three major observations stated

below:

1. If a unit have a short activation vector in the pattern space, it can be considered insignificant and can be removed.

2. If the angle between the unit vectors of two units is less than 15º, then the units can be considered having similar

functionality and one of them can be removed.

3. If the angle between the unit vectors of two units is more than 165º, then the units can be considered having

complimentary functionality and both of them can be removed.

Now, that we know the connections to prune, the weights of the corresponding network connections are updated to make

sure that irrelevant hidden units get zero weight. The weight distribution curves in figure 6 and 7, shows the distribution

of weights among the connections from input layer to hidden layer before and after the weights have been updated to

prune the network.

 Figure 6: Weight Distribution before pruning Figure 7: Weight Distribution after pruning

2.2 Pruning Input layer units

Input features are pruned by using autoencoder. An autoencoder is a multi-layer network where the aim of hidden layer

is to reconstruct the input data at the output layer which means the hidden layer have to extract the most relevant

information. This encoding and then decoding of the input feature forces the autoencoder to engage in dimensionality

reduction. For this experiment, a 3-layer autoencoder was used with the hidden layers having variable units which were

then fed as input features to the NN for stock market prediction.

For Both pruning at the input layer and hidden layer, the network is re-trained and tested on variable values of learning

rate, batch size and number of epochs, to test and compare the accuracy and error rate of the reduced/pruned neural

network to the one before pruning. Also, the training and testing set for the experiment was randomly split in ratio of 80%

and 20%, respectively.

3 Results and Discussion

3.1 Results and Evaluation of Pruning at hidden Layer

Experiment conducted to prune the Hidden layer inputs on the basis of distinctive property showed some promising

results. The trade-off curve between accuracy Loss and percentage of hidden units removed after re-training is shown in

Figure 8. The accuracy did not drop much when the incoming and outgoing connections from the hidden layer units, that

were found to be irrelevant, were removed from the network. This shows that these units did not contribute much in final

results. Also, the results highlighted the importance of re-training, as the accuracy dropped much faster when the model

is not re-trained on the reduced NN.

Figure 8: Accuracy Loss and Hidden layer Units Removed Trade-off

The Reduced Network after pruning the hidden layer, left a network that have 28% less connections, with almost no

accuracy drop.

3.2 Results and Evaluation of Pruning at Input Layer

Experiment conducted to prune the features that is feed as input in the neural network using the autoencoder technique

showed some promising results. The trade-off curve between accuracy Loss and percentage of input features

summarised/reduced by the autoencoder after re-training is shown in Figure 9.

The accuracy of the network did not drop much fast when the input features were summarised by the autoencoder to 75%

of the total input features, but it dropped faster when the input features were summarised even further by the autoencoder

Figure 9: Accuracy Loss and Input Features Removed Trade-off

Surprisingly, the accuracy increased by a small percentage when we summarised the input features by 15%. This shows

that using more meaningful features can actually improve the accuracy for classification tasks. The experiments showed

that, the input layer pruning using autoencoder technique can further reduce the network by 5% with a small increase in

the accuracy and the network can be reduced further by 7% with almost 5% accuracy loss.

The results shown above clearly depicts that the neural networks can be reduced using the above used techniques, but

there are other techniques like, Pruning using the concept of incremental contribution of explanatory variable [2] [10]

which showed better results on a similar kind of economic dataset. Also, creating a taxonomy of undesirable units [8] and

then pruning on the basis of it rather than only relying on the distinctiveness of the hidden units can also give better

results.

4 Conclusion and Future Work

A novel approach to reduce/prune a neural network by reduction both at hidden layer level and input layer level have been

shown in this paper. The above explained experiment proves that the used techniques give good results for network

reduction/pruning. The explained methods, allowed us to reduce 36% of the network connections while maintaining the

accuracy of the network on the test set, which was 70% in most of the cases. Note that these values can differ for different

datasets and for different network configurations. Also, the experiment also showed that the above used network was

pruned by almost 15% with a small increase in the accuracy when using autoencoder technique.

I end with listing some topics for further research. An Extension of finding irrelevant units and then pruning them would

be, to be able to rank the hidden units on the basis of their contribution and then performing iterative pruning on them

[11]. In this scenario, I would like to work on multi-layer networks in comparison to three-layer network used in this

paper, so as to be able to compare the percentage of pruning based on how deep the layer is in the network [12].

Furthermore, I will also like to implement a variational autoencoder and denoising autoencoder, and a combination of

these two type to see if that improves the performance even further and to what extent.

References

[1] S. Han, J. Pool, J. Tran and W. Dally, "Learning both Weights and Connections for Efficient

Neural Network," in Advances in Neural InformationProceeding Systems 28, 2015.

[2] J. F. Kaashoek and H. K. Van Dijk, "Neural Network Pruning Applied to Real Exchange Rate

Analysis," Journal of Forecasting, vol. 21, pp. 559-577, 2002.

[3] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to document

recognition," in Proceedings of IEEE, 1998.

[4] A. Krizheysky, I. Sutskever and G. E. Hinton, "Imagenet classification with deep

convolutional neural networks," In Advances in neural information processing systems, pp.

1097-1105, 2012.

[5] Y. L. Cun, J. S. Denker and S. A. Solla, "Optimal Brain Damage," AT&T Bell Laboratories,

Holmdel,N.J. 07733.

[6] J. Sietsma and R. Dow, "Creating arti¢cial neural networks that generalize," Neural Networks,

vol. 4, no. 1, pp. 67-69, 1991.

[7] K. Kameyama and Y. Kosugi, " Neural network pruning by fusing hidden layer units," Trans.

IEICE, vol. 74, no. 12, pp. 4198-4204, 1991.

[8] T. D. Gedeon and D. Harris, "Network Reduction Techniques," Proceedings International

Conference on Neural Networks Methodologies and Applications, vol. 1, pp. 119-126, 1991.

[9] M. S. Brown, M. Peloski and H. Dirska, "Dynamic-radius Species-coserving Genetic

Algorithm for the Financial Forecasting of Dow Jones Index Stocks," Machine Learning and

Data Mining in Pattern Recognition, pp. 27-41, 2013.

[10] H. Theil, "Principles of Econometrics," Wiley, New York, 1971.

[11] J. Gil, "Pruning deep neural networks to make them fast and small," [Online]. Available:

https://jacobgil.github.io/deeplearning/pruning-deep-learning. [Accessed April 2018].

[12] P. Molchanov, S. Tyree, T. Karras, T. Aila and J. Kautz, "PRUNING CONVOLUTIONAL

NEURAL NETWORKS FOR RESOURCE EFFICIENT INFERENCE," in ICLR, 2017.

	References

