
Convolutional Autoencoders and the Distinctiveness Measure

Jonathon Martin

Research School of Computer Science, Australian National University

{u5582907@anu.edu.au}

Abstract. Using a convolutional autoencoder with general architecture, a measure of distinctiveness is used to
progressively prune the produced data encoding. It is found that the decoder component was able to tolerate a small
amount of pruning to the encoded state, but excessive pruning introduced noise in the decompressed samples.

Keywords: neural network, convolutional, compression, distinctiveness

1 Introduction

Image compression is a pervasive technology in the digital age; enabling the fast transfer of data in quantities not
achievable otherwise. Common compression schemes include both lossy formats e.g. JPEG, and lossless formats e.g.
PNG, TIFF [1]. These formats and many others rely on the underlying strategies of pixel transformations, quantization
and entropy encoding [2].

Compression itself is always a compromise between the quality of a decompressed artifact (i.e. similarity to the
original) and the degree of compression achieved. Neural networks have an advantage over common algorithmic
compression schemes, as they can easily be tweaked to achieve the desired degree of compression for a given application.
The tradeoff for neural networks is that decompression is rarely optimal, as the procedure for doing so is learned from a
finite set. A particular example of this is the method used by [3]. In this study Gedeon & Harris progressively reduce the
size of the hidden layer in a neural network using distinctiveness as a measure, in order to achieve an appropriate balance
between compression ratio and decompressed quality.

Convolutional neural networks (CNNs) are a popular variation of deep learning networks, which specialize in spatial

data. Their operation of applying the same function over many ‘receptive fields’ of the input data is inspired by the
operation of the human visual system. CNNs can be thought of as feature extractors, as they excel at generating high level
features of inputs from lower level features or the raw input. CNNs have a long history in machine learning but have only
recently been properly acknowledged for their feature extracting prowess. This is due to the large number of parameters
required to achieve quality results, which required increases in computing power and the application of GPUs to neural
network training. The exceptional performance of [4] on the ImageNet classification problem brought CNNs into the
spotlight and they have since been applied in some the most advanced artificial intelligence projects to date.

Autoencoders are neural networks that have the same input and output space, generally with a smaller number of

hidden neurons in the centre of the network. This structure causes the network to compress it’s input and then decompress
it back to the original. Autoencoders have been successful in a number of dimensionality and feature extraction tasks. For
this reason, convolutional autoencoders are particularly interesting, as both CNNs and autoencoders do some amount of
feature extraction. We can conceptualize this affinity by imagining that convolutional autoencoders do not create an
arbitrary encoding of the input data, but rather extract its primary features which can then be pieced back together to form
the original.

The distinctiveness of a hidden neuron in a network is a measure of its angle relative to its sibling neurons [5]. This

angle is measured between the activation vectors over the pattern presentation set. This vector is determined by presenting
the network with each pattern in the training set and recording the activations of each neuron, which is ultimately a
representation of the functionality of that neuron. If two neurons have the same, or more realistically, similar activation
vectors then they are said to be non-distinct and are interpreted as computing the same function. The intuition for reducing
network size is that if two neurons are doing the same computation, then one of them is necessarily redundant.

Pruning is used in artificial neural networks for a number of reasons. One such is that researchers are not able to tell

a priori the optimal network size for a given dataset. In this case, a researcher will construct a network that they are
confident is larger than required (but hopefully will not overfit) and prune away neurons as needed until the measured
drop in performance is no longer tolerable. A second reason is training time: a network with fewer weights to train will
necessarily require less operations to perform backpropagation and will consequently take less time to train.

The goal of this paper is to assess the efficacy of applying pruning via distinctiveness to convolutional autoencoders.
A small, general architecture has been chosen so that the results might be applicable to any application. The the UCI
Faces dataset [8] was used for this implementation.

2 Method

The UCI faces dataset [8] consists of consists of 640 black and white face images. These are taken with varying poses
(straight, left, right, up) and expressions (neutral, happy, sad, angry) with some of the faces are wearing sunglasses. The
faces are available in 128x128, 64x64, 32x32 resolutions, here we use the 32x32 variation of [8] to achieve reasonable
training times on the available hardware. This dataset is generally used for
classification, but here we take the images for compression and ignore the labels. For
ease of use with the designated machine learning library [6], it was preferable to
convert the chosen images to PNG format, and pad the vertical dimension to make
the images square. Figure 1 shows an example of one of the final images. This dataset
was divided into a training set of 588 images, and a validation set of 52 images.

Each 32 by 32 image consists of 1024 values, which are scaled to the interval [0,

1] to be fed into the input layer of the network. These values are compressed into the
128 hidden layer values, which are then decompressed into the 1024 output values.
The output values are then scaled back to an 8-bit range and converted into images.
With all hidden neurons intact, this reduction in size is equivalent to a
compression ratio of 8:1.

An autoencoder
consists of both an encoder and decoder as explained above,
so the network architecture is defined in those two parts. The
encoder consists of 2 convolutional layers, each followed by
a Rectified Linear Unit (ReLU) layer, and then by a
Maximum Pooling layer. A ReLU layer is simply the
application of the ReLU activation function. This is a non-
linear activation function which is frequently used in CNNs
to combat vanishing gradients. The described function is as
follows:

	
𝑟𝑒𝑙𝑢(𝑥) = max	(0, x)

Max. pooling layers operate as a form of downsampling,
reducing the size of the output of each convolutional layer,
while preserving a reasonable amount of information. The
first convolutional layer expands the single input channel to
256 channels, and the second reduces this to 32 channels. All
layers together reduce the input space of 1024 to 128 values
for each input sample. The decoder consists of 3
convolutional transpose layers, each followed by a ReLU
layer. These together attempt to reproduce the input space.
This architecture was modeled on [7] and modified for use
with the distinctiveness measure and [8]. Figure 2 shows this
architecture.

Each time the network training was performed, it was for

200 epochs, meaning 200 presentations of each image in the
training set described previously. As each training batch was
processed, the mean image of that batch was removed from
each individual to reduce noise. This mean image was added
back to the result before loss was computed. At the end of
each 200 epochs, the activation for each item in the training
set was recorded for each hidden neuron. The angle between
each of these activation vectors was then computed. The pair
was hidden neurons with the smallest angle between them
was determined to be non-distinct, and one of the pair was
removed from the network. Training would then begin
again, until the desired number of hidden neurons was

Fig. 1. UCI Faces example, preprocessed.

Fig. 2. Convolutional autoencoder architecture

reached. Since a convolutional autoencoder does not produce a 1-dimensional encoding, it was necessary to convert the
encoding to 1-dimension for pruning, and then convert back for decoding. The data was not processed by any layers
during this step. As a control, a second network was trained with the same variables, but without pruning. From here on,
the un-pruned network will be referred to as network A, and the pruned network as network B.

A learning rate of 𝑒/0, a batch size of 48 and L1 loss were used. While mean-squared error loss is more commonly

used for autoencoder tasks, it was found that the L1 loss function, which minimizes the absolute differences between data
points, produced more faithful reconstructions of the sampled images.

3 Results & Discussion

Images decompressed by the constructed networks definitely
do not compare to modern compression schemes, but we do find
an interesting effect in the resulting data.

Figure 3 shows both an original, non-compressed image and

its decompressed equivalent produced by network A. Figure 4
shows a similar image pair produced by network B. Both of
these sample results are from the validation set and have the
relevant loss and number of pruned hidden neurons listed
beneath them. We can see that both network A & B were able to
reproduce the high-level structure of the input images, including
markings in the background, the shape of the head and
shoulders, and a rough hairline. However, with this level of
pruning applied, network B produces images that are noticeably
‘noisier’ than network A.

It is worth noting that these effects are not consistent across

the training of both networks. Take Figure 5 and Figure 6, which
show image pairs taken from network A & B respectively after
400 epochs of training time. At this stage network B has had 4
hidden neurons removed. We can see that the quality of the
produced images is similar, indicating some level of robustness
exists in the convolutional architecture. These results are similar
to those shown in [9], which found decompression quality of a
linear autoencoder could be improved by pruning via
distinctiveness, but only to a point, after which the quality
quickly decreased again.

These results are consistent with our understanding of CNNs.

If we return to the feature extractor analogy, we can imagine that
removing particular neurons in the centre hidden layer interferes
with the subsequent layers ability to detect nearby features. This
introduces ‘uncertainty’ in these layers which manifest as noise
in the resulting output.

This analysis of decompressed image quality and its

divergence over the course of training is visualized in Figure 7
which shows the loss of each network over the 1200 total epochs
that each was trained for.

Fig. 3. Original (left), decompressed (right). Network A.
Loss=0.0273, Pruned=0

Fig. 4. Original (left), decompressed (right). Network B.
Loss=0.0287, Pruned=12

Fig. 5. Original (left), decompressed (right). Network A.
Loss=0.0272, Pruned=0

It is clear that both networks presented were not able to
reproduce the finer details present in the source images. Most
prominent is the lack of obvious facial features in the
decompressed samples. There are two possible explanations
for this:

1. The constructed networks were not wide or deep

enough to extract the high-level features needed in the
internal encoding that would allow the decoder to
reconstruct these fine details.

2. We are biased in assessing the quality of these
reconstructions because we are human (presumably)
and are especially equipped for detecting the presence
of faces.

Apart from this limitation in the reconstruction of faces (which may or may not exist) the training of both proposed

networks was also limited by the size of the chosen dataset. Many successful applications of CNNs can be partly attributed
to the immense data used in their training. For this reason, our application is at risk of overfitting – although the similar
results found in both the final stages of training and the validation set provide some argument against this.

Fig. 7. Loss of network A & B during training

4 Conclusion & Future Work

The use of pruning via distinctiveness appears to have some value in the realm of convolutional autoencoders, but
unfortunately must be monitored carefully to avoid over pruning. It may be that this technique is more valuable in
processes that require less precision or that tolerate noise more effectively - possibly convolutional classifiers.

It would be useful to attempt replication of these findings with a larger, more varied dataset which would allow for a

better generalization of the compression process. Performing a similar experiment with a larger network may also be
valuable, this would allow one to assess the full potential of CNNs to reconstruct data from a minimal collection of
primary features.

Fig. 6. Original (left), decompressed (right). Network B.
Loss=0.0322, Pruned=4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 100 200 300 400 500 600 700 800 900 1000 1100

L1
 L

os
s

Epoch

with pruning (B) without pruning (A)

References

1. Murray, J., vanRyper, W.: Encyclopedia of Graphics File Formats, 2nd Edition. O'Reilly Media. (1996)
2. Jiang, J.: Image compression with neural networks – A survey. Signal Processing: Image Communication. vol. 14, pp. 737--760.
(1999)
3. Gedeon, T.D., Harris, D.: Progressive Image Compression. IJCNN. (1992)
4. Krizhevsky, A., Sutskever, I., Hinton, G. E., ImageNet Classification with Deep Convolutional Neural Networks. NIPS. (2014)
5. Gedeon, T.D.: Data mining of inputs: analysing magnitude and functional measures. International Journal of Neural Systems. vol.
8, pp. 209--218.
6. PyTorch. http://pytorch.org/
7. PyTorch. beginner-autoencoder. https://github.com/L1aoXingyu/pytorch-beginner/blob/master/08-
AutoEncoder/conv_autoencoder.py
8. Dua, D., Karra Taniskidou, E. UCI Machine Learning Repository. (2017). School of Information and Computer Science,
University of California. http://archive.ics.uci.edu/ml.
9. Martin, J., Compressing Large Images using the Distinctiveness Measure. Research School of Computer Science, Australian
National University.

