
Neural Network Reduction: Practical Application of Neural Network
Topology Pruning Techniques

Jayden Caelli1

1 Research School of Computer Science,
Australian National University

u556455@anu.edu.au

Abstract. In this paper a convolutional neural network + feed forward neural network is trained to classify hand
written digits. Using this method the accuracy of the network model was determined to be 98.47%. Network pruning
techniques were investigated to reduce the network model. It was found the threshold angles used for the comparison
of neurons could be used to determine the number of neuron’s removed, whilst being a trade off between network
size and accuracy.

For feed-forward neural networks trained using back-propagation the number of hidden units required can be difficult
to determine prior to training [2]. Whilst the number of input neurons and outputs can be determined easily, by the
number of input features and type of task being used, the number of hidden neurons cannot be straightforward
determined.

If the number of hidden neurons used is too small, then the network may fail to learn, however if the number of hidden
neurons is too high the network may take a long time to train [2]. This is one of the disadvantages of back propagation,
being that it can take a long time to train a network[2].

Using the minimal number of neurons needed for good performance and efficiency for a network model has a few
advantages. One of these being the network model can be made more efficient during actual use, and the minimal
number of neurons can be used as guide for solving similar problems [2].

1.2 Network Pruning

Network pruning is the process of removing neurons in a trained network, with the intention to reduce the size of the
network [2]. The pruning of neurons is based on the output of each neuron from the training patterns [2]. The removal
of neurons is usually done in a two step process. Firstly any neuron which has outputs which are close to zero on all
training patterns is removed [2].

Secondly the outputs are further inspected to find properties of each neuron that mean it should be removed. One of
these properties that is used is termed distinctiveness[2].

The distinctiveness of a hidden neuron is the angle between another hidden neurons unit output. Specifically it is
defined as the angle between two hidden neurons, where each hidden neuron’s vector is the output from each training
pattern. That is for each neuron, construct a vector with the dimensions equal to the number of training patterns, and
where each value is equal to the output of the neuron for that training pattern. Using these vectors the angle between
each pair of hidden neurons can be calculated and compared.[2]

The table below shows an example of 16 training patterns, with 6 hidden neurons [2].

Hidden
Neuron

Pattern 1 2 3 4 5 6 Result Target

0 0.330 1.000 0.910 0.582 0.593 0.381 0.000 0.000

1 0.091 0.994 0.229 0.101 0.834 0.839 0.000 0.000

2 0.098 0.994 0.348 0.130 0.874 0.868 0.000 0.000

3 0.022 0.488 0.026 0.012 0.960 0.982 0.025 0.000

4 0.094 0.994 0.325 0.128 0.853 0.849 0.000 0.000

5 0.021 0.489 0.024 0.012 0.952 0.979 0.025 0.000

6 0.023 0.488 0.025 0.016 0.965 0.984 0.025 0.000

7 0.005 0.006 0.001 0.001 0.990 0.998 0.805 1.000

8 0.117 0.994 0.339 0.132 0.875 0.870 0.000 0.000

9 0.026 0.488 0.025 0.012 0.960 0.983 0.025 0.000

10 0.029 0.488 0.026 0.016 0.971 0.986 0.025 0.000

11 0.006 0.006 0.001 0.001 0.991 0.998 0.805 1.000

12 0.027 0.489 0.24 0.016 0.965 0.984 0.025 0.000

13 0.006 0.006 0.001 0.001 0.990 0.998 0.805 1.000

14 0.006 0.006 0.001 0.002 0.992 0.998 0.805 1.000

15 0.001 0.000 0.000 0.000 0.998 1.000 0.816 0.000

If the angle between two neurons is less then approximately 15 degrees, these neurons can be seen as highly similar
to each other, and therefore one of them can be removed. The weight vector of the neuron removed is added to the
weight vector of the other neuron. [2]

If the angle between two neurons is greater then or equal to 165 degrees then the two neurons can be viewed as being
complimentary to each other, and therefore both neurons can be removed.[2]

Below is a table showing the angles calculated between the 6 hidden neuron’s output vectors from the table above.
Pair of units Vector Angle

1 2 81.8

1 3 25,2

1 4 8,4

1 5 176.5

1 6 169.9

2 3 63.0

2 4 77.8

2 5 100.8

2 6 103.7

3 4 18.0

3 5 157.7

3 6 163.7

4 5 173.7

4 6 177.5

5 6 7.3

Since the sigmoid activation function is used, the output values for each neuron is limited to between 0 and 1.
Calculating the angle between these vectors would therefore be limited to the range 0-90 degrees. To overcome this the
vectors are first calculated in respect to the origin (0.5,0.5) to obtain angles between 0-180 degrees.[2]

Using this method to remove neurons should allow the network to reduce its size without majorly affecting
performance, and requiring only minor retraining [2].

2 Example Study

To use the network reduction technique highlighted above the MNIST Hand Written Digit Data Set [1] was used. This
data set contains images of hand written digits, with the aim to correctly classify the digit that is being represented.

2.1 Data

The data set contains 70,000 samples of hand written digits, with 60,000 being used as training data and 10,000 used for
testing. Each sample is a preprocessed sample taken from the original NIST Hand Written Digit Data Set, in which each
sample is contained in a 28 x 28 pixel image [1]. Each pixel in the image has a value between 0 and 255.

2.2 Data Pre-processing

Each pixel within each sample was preprocessed to be within the range of 0-1, using min max scaling, with a maximum
of 255 and minimum of 0.

2.3 Convulotional Neural Network Structure

The convolution neural network structure used resembles closely to the LeNet-5 structure. In this architecture there
exists 7 layers, not counting the input. The first layer is a convolutional layer which outputs 6 x 28 x 28 feature maps,
taking as input a 1 x 28 x 28 hand written digit. This is then passed to the sub-sampling (max-pool) layer to create 6 x
14 x 14 feature maps. This is then passed to the next convolutional layer which outputs 16 x 10 x 10 feature maps.
Again this is passed to another sub-sampling (max-pool) layer to create 16 x 5 x 5 feature maps. This is then passed to a
fully connected layer with 120 hidden neurons. The next layer is a fully connected layer with 84 hidden neurons. This is
then passed to the output layer with 10 neurons. Below is a figure showing a similar LeNet-5 setup used for hand
written digit recognition.

Figure 1: LeNet-5 CNN For Hand Written Digit Recognition [4]

In the implementation of the LeNet-5 structure there exists a fully connected layer with 400 hidden neurons, sitting
between the last sub-sampling (max-pool) layer and the first fully connected (120 hidden neuron’s) layer. This was
needed as during implementation it was not possible for 400 features (16 x 5 x 5) to be passed to a fully connected layer
with 120 neurons.

For the last hidden fully connected layer (84 hidden neurons) it was decided to increase this to 110 neurons, as the aim
of this paper is to view the effectiveness of neuron pruning, and 110 was found to be the maximum number of neurons
that could be used without sacrificing accuracy.

The sigmoid activation function was used for each fully connected layer. The soft max activation function was applied
to the output layer (10 neurons) in order to determine the prediction made for the given input (being the maximum
probability from the 10 neurons).

2.3 Experiments

To test the accuracy of the network model and compare to other results, the hold out method was used, where the neural
network is trained on the 60,000 training samples, and the accuracy is then calculated based on the 10,000 testing
samples. Each experiment was run 10 times, and the values averaged.

The network training was performed using mini-batch (50 samples per batch) ADAM gradient descent. A learning rate
of 0.001 was used. The training phase repeated until a predefined halting condition was meet. The accuracy was
determined to be on average 98.47%. Below is the confusion matrix for one of the trained networks on the test set.

Digit 0 1 2 3 4 5 6 7 8 9
0 973 0 0 0 3 0 2 2 0 0
1 0 1131 1 0 0 1 1 0 1 0
2 1 1 1018 1 3 0 0 6 2 0
3 0 0 2 996 0 5 0 3 2 2
4 0 0 0 0 975 0 0 1 0 6
5 2 0 0 9 0 874 2 0 2 3
6 5 2 0 0 6 3 941 0 1 0
7 0 2 5 0 0 0 0 1015 1 5
8 5 1 2 3 4 3 1 4 948 3
9 0 4 0 2 8 3 0 10 6 976

2.4 Neural Network Pruning
Initially an attempt was made to apply neural network pruning to the model on the last fully connected layer (110
Neurons). However this experiments failed to prune any neurons. It was found that the approximate maximum and
minimum angles were 150 and 40 respectively. Based on this experiments were run to see changing the thresholds of
the minimum and maximum angles required for the removal of neurons would led to an increasing reduction in the

neural network, with an expected reduction in accuracy. To perform this initial thresholds of 40 (for neurons to be
deemed identical) and 150 (for neurons to be deemed complimentary) were set. These thresholds were then increased or
decreased by 15 degrees (decreased for complimentary and increased for identical).

The neural network pruning was applied to a fully trained neural network (deemed by the early stopping criteria). After
each neuron or pair of neuron’s was removed the network was trained for one epoch on the entire training set.

Minim
um
Degree
Thresh
old
(Simila
rity)

Maxim
um
Degree
Thresho
ld
(Compl
imentar
y

Number
of
Neurons
Before
Pruning

Accuracy
Before Pruning

Minimum Number of
Neurons After Pruning

Maximum Number of
Neurons After Pruning

Accuracy After
Pruning

15 165 110 98.46% 110 110 98.46%
40 165 110 98.48% 108 110 98.47%
40 150 110 98.48% 104 107 98.52%
40 135 110 98.43% 94 100 98.45%
55 135 110 98.35% 51 64 97.9%
70 135 110 98.42% 14 22 92.36%

2.4 Analysis of Results

Firstly the accuracy of the network without pruning is compared. The average accuracy of the network was seen to be
98.47%. This is compared to the results in [3], which achieved an accuracy of 99.746%. In this paper a variation on a
convultional neural network layer is defined and used, called relaxed convolutional layer’s. This combined with a more
advanced technique for modifying the learning rate could in part explain the difference in accuracy[3].

The neural network pruning experiments show that an increase in the threshold’s lead to more neurons being pruned,
which is expected. The accuracy of the neural network can be seen to sometimes have a minor increase with the
removal of hidden neurons (using threshold’s 40 – 150 and 40-135), which may be caused by the additional training of
the network when a neuron is removed. It is noted this may be a sign that the network model was not fully trained.

It can be seen a significant increase in the threshold’s was required to achieve any significant pruning (using 55 – 135),
which is unexpected. Since it is already known the optimal number of hidden neurons is 84 in this layer, it was expected
that adding additional neurons (which should be redundant) would lead to a network structure that is at least close in
range to 84. However it was found that using these thresholds did lead to relatively successfully pruning (a minimum
reduction of 42% (110 to 64), with only a minor loss in accuracy (98.35% to 97.9%)).

It can be seen that exceeding this threshold (55 – 135) led to a significant reduction in the number of neurons (minimum
reduction of 80%) whilst leading to a significant reduction in accuracy (98.42% to 92.36%).

3 Conclusion and Future work

A convolutional neural network capable of classifying a hand written digit within the MNIST Hand Written Digit Data
Set was constructed. It was then shown that using the network pruning property distinctiveness could be used to prune
this trained neural network. It was shown that modifying the threshold’s used to determine when neuron’s should be
removed could be used to increasing prune the network, with a trade off in accuracy.

Further work could include the use of further neural network pruning properties, such as badness [2]. This could be
used to remove fully connected layer’s within a neural network. Experiments could also be done to prune the
convulotional layers within the neural network. In this way pruning would be done to the filter’s within a convolutional
layer, using an algorithm termed try and learn [5], which similarly can be used to prune the convolutional layer, leading
to a trade off between network topology and accuracy.

Other future work could include seeing if the number of hidden neurons left after pruning the network could be used to
find the optimal or near optimal number of hidden neurons in a similar or even the same problem.

4 References

[1] MNIST Database, “http://yann.lecun.com/exdb/mnist/”
[2]Gedeon, TD, Harris, D, Network Reduction Techniques, In: Proc. Int. Conf. on Neural Networks Methodologies and

Applications, AMSE, San Diego, vol. 2, pp. 25-34, 1991.
[3] Chunpeng, W, Wei, F, Yuan, H, Jun, S, Satoshi, N, Handwritten Character Recognition By Alternatively Trained Relaxation
Convolutional Neural Network, In: 14th International Conference on Frontiers in Handwriting Recognition, 2014.
[4]Lechun, Y, Bottou, L, Bengio, Y, Haffner, P, Gradient-Based Learning Applied to Document Recognition, In: Proc. Of The IEEE,
1998.
[5] Huang, Q, Zhou, K, You, S, Neumann, U, Learning to Prune Filters in Convolutional Neural Networks, 2018,
“https://arxiv.org/pdf/1801.07365.pdf”

https://arxiv.org/pdf/1801.07365.pdf

