
Letter Recognition using Deep Feed Forward Neural
Networks

Anish Lakhwara
The Australian National University, Canberra

u5838848@anu.edu.au

Abstract. Shallow/deep feed forward neural networks were trained using the
back propagation algorithm on a large categorization data set of 20,000 unique
letters to determine how well this task could be executed by a machine learning
algorithm. The deep neural network employed a scheduler, mini-batches as well
as drop out algorithms. The parent data set was generated by distorting 26
uppercase letters from 20 diferent fonts and were then summarized into 16
numerical attributes. Diferent sizes, learning rates and network topologies were
tested to fnd optimal results, which are evaluated using an accuracy measure
and some cases a confusion matrix. The results of using a deep neural network,
with all these additions were quite abysmal, with only a 3.64% testing
accuracy. The shallow neural net performed signifcantly better without
optimizations on the data set with 13.5% accuracy.

Keywords: Machine learning, neural networks, feed forward, back
propagation, categorization,

1. Introduction

Since the dawn of computing human beings have been trying to get computers to
perform complex tasks at a competency level that is indistinguishable from actual
humans (turing test3). While computers have easily been able to outperform humans
at certain tasks (memory, computation), only in the last two decades have computers
become masters of complex games such as Chess (Deep Blue1) and Go (AlphaGo2),
that humans were previously undefeated in. These class of problems can be split into
two diferent components – Understanding the current state of the situation
(categorization), and applying a string of actions which leads to benefcial outcomes
(decision-making). The broad feld of computing commonly referenced to as
“Machine Learning” (ML) has lead the charge against humanity in many of these
endeavors. However utilizing these algorithms required either vast amounts of
computing power or huge swaths of data or both. In recent years the advancement in
computing power and the proliferation of data has sparked a renewed interest in

machine learning algorithms, making them common, everyday options available on
over a billion devices. The application of neural networks to the frst component of
these problems, that is the ‘categorization aspect’, is not new, however their high
success rates across various diferent categorization problems (LINKS) in recent
history has made them a popular option for solving such types of problems.

This research paper focuses on using a supervised learning algorithm or neural
network, to categorize a large number of examples presented to the network
appropriately. I wanted to test how accurately a relatively small neural network (less
than 5 layers) and a deeper neural network (with 7 fully connected layers) would
perform on a complex data set with many examples, even though the data set may not
be large enough for such a deep neural network. The data set I chose to use in this
paper was acquired from the UCI Machine Learning Repository
(http://archive.ics.uci.edu/ml/datasets/Letter+Recognition). I chose this data set
because of the (20,000) size of the data set as well as it’s complexity. The original
paper4 that utilized this data set dates back to 1991, and is using a very diferent
method to solve the classifcation problem. Instead of relying on neural networks Frey
and Slate decided on using Holland-Style adaptive classifers. They utilize fuzzy logic
and rule-based systems to classify the data set to high degrees of success (at best they
achieved 80% classifcation accuracy) and so I wished to compare small neural
networks against their previous attempts. Other papers that use this data-set as a
classifcation problem also exist and use a variety of methods, both supervised and
unsupervised with somewhat successful results.

2. Data Set Attributes

This data set contains 20 diferent fonts which represent fve diferent types of
stroke styles (simplex, duplex, triplex, complex and Gothic) and six diferent letter
styles (block, script, italic, English, Italian and German). Covering a large amount of
diferent stroke and letter styles adds diversity to our data set which helps to represent
“real world data” accurately. Furthermore each character image was distorted along
one of various axis. Characters could be linearly magnifed, have their aspect ratio
changed (horizontal magnifcation) and be horizontally or vertically “warped”. This
distortion considerably increases the complexity of the data set which is part the
reason I ended up choosing it as a complex data set raises many challenges for a
shallow neural network.

To produce the resulting data set that was used as input, each character was
condensed down to 16 integer attributes scaled to an integer range of 0-15. These
attributes are available in the original paper and will not be copied here for brevity
sake. However I will include that from these attributes the original character cannot
be uniquely determined, as these attributes are mostly diferent means that can be

http://archive.ics.uci.edu/ml/datasets/Letter+Recognition

calculated from the letters “on” pixels. This creates further challenges for the neural
network to correctly classify the data as it does not have the original image of the
character to go of of, but instead attributes of the character.

Finally there were some transformations I applied to this data set to make output
easily classifable for the neural network. Of the 20,000 samples in the data set I split
them into two diferent sets for testing and training. The training data set contains
15000 of the original samples and the testing data set contained the remaining 5000.
Given the large size of the data set I thought this was a fair split for our neural
network, though it is worth noting that the original paper had a training set of 16,000
and testing set of 4000.

Also transformed was the character output. Originally each of the character outputs
was referenced by letter, and I transformed this to an integer range of 0-25 to include
all 26 characters of the alphabet for ease of classifcation for the neural network.

For the deep neural networks the range of all the attributes was scaled down to be
between 0 – 1. This scaling was applied so that larger weights do not carry more
signifcance in the network. It should have also been applied to the shallow neural
networks.

3. Description of the Neural Networks

A variety of diferent network sizes, structures and training times and parameters
were tested to see which would produce the best output for the shallow network.
However for all these networks were trained with Stochastic Gradient Descent (SGD)
as an optimizer, and performance was evaluated using cross-entropy, and since this is
a classifcation problem, these are the standard choice of algorithm. The same
optimizer and loss algorithms were used for evaulation of the deep neural network,
however there were additional algorithms used to further optimise training time,
performance and improve resiliency of the network. The deep neural network utilized
mini-batches, drop out layers, as well as a scheduler to vary learning rate.

Deciding upon the number of input neurons and output neurons was fairly
straightforward for both shallow and deep neural networks. Each attribute had one
neuron assigned to it, resulting in 16 input neurons. There were 26 output neurons
each relating to one letter of the alphabet. Choosing the number of hidden neurons
was the subject of much experimentation during the shallow neural network phase of
this paper. The results of the experimentation are captured in the table below.

Hidden
Neurons

Learning Rate Epochs Testing
accuracy

12 0.01 500 4.32%

24 0.01 500 5.46%

48 0.01 500 6.4%

96 0.01 500 2.95%

50 0.01 500 5.4%

44 0.01 500 5.1%

48 0.01 1000 6.78%

48 0.01 2000 5.5%

48 0.01 4000 7.12%

48 0.01 10000 13.55%

48 0.02 3000 13.19%

48 0.03 3000 7.9%
Results of experimentation with a shallow single hidden layer neural networks

Having then exhausted the possibilities of tinkering with parameters of a single
hidden layer neural network I moved on to exploring the outcomes of a neural
network with two hidden layers with an epoch size of 3000. I decided to split the 48
single layer into two layers each consisting of 24 neurons each. This performed far
below expectation with a testing accuracy of 1.24%. Assuming I had far too many
neurons I dropped the number of neurons in the frst layer to 18 and the second layer
to 12, producing marginally better results at 4.56% testing accuracy. Moving on to a
neural network with 10 hidden neurons in the frst layer and 8 in the second layer
resulted in further marginal improvements with an accuracy rate of 5.89% in training
and 5.3% during testing. Going below this with 8 neurons in the frst hidden layer and
6 in the second led to a much reduced accuracy of only 2.4%.

For implementation of the deep neural network, I frst scaled the values in each of
the attributes to be between 0 – 1 and I decided on frst using 5 layers each with
between 60 – 200 neurons. In order to overcome the vanishing gradient problem I
used ReLUs as the activation function instead of the standard sigmoid activation
function. During training I noticed that many of the ReLUs were “dying” (ie, they
remained 0 forever) in layer 1. Because of the way back propagation works, this
implied that there were dead ReLUs further down the neural network. In order to

remedy this, I tried a variety of diferent activation functions, including leaky ReLUs,
RreLUs, and Hardtanh. However even after solving the dead ReLU problem, the
accuracy of the neural network was very low. I then decided to lower the number of
neurons in each layer, but kept the frst layer larger than the rest. The intuition behind
this is that the frst layer will have various simple properties to understand and the
later layers will use these simple properties, and won’t need to come up with as many
complex ones. Still the accuracy rate was abysmal. In order to improve this, I then
implemented some other functions, including utilizing mini-batches during testing,
implementing a scheduler to change the learning rate as the epochs progress, and
implementing some drop out layers. Despite all these additional improvements, the
accuracy remained pityfully low, lower than even the shallow network, at a maximum
of just 4.67%. Having reached my wits end, I concluded that the data set was simply
too small and not varied enough for a deep neural network to performally efectively.

4. Results and Future Work

Comparing results to various other studies that utilized the same data set with very
diferent methods, the outcome of uing neural networks on this data set leaves a lot to
be desired. With other papers getting accuracy of over 80% while utilizing “older”
methods such as clustering and decision trees, neural networks should be able to
perform better on this data-set.

What the results above defnitively prove is that there is much more work to be
done with this data set when it comes to neural networks. Achieving only a measly
13.5% accuracy at best is disappointing. This was achieved through an epoch size of
3000, 48 hidden neurons and a learning rate of 0.02, using the back propagation
algorithm with SGD as the optimizer and cross-entropy as the evaluation. While this
does ft my description of a shallow neural network and had a short training time, the
performance leaves a lot to be desired.

There are a few reasons that performance was sub-par. For one the high complexity
of the data set makes it inherently difcult for a shallow neural network to work with.
The large number of diferences between examples of the same class, as well as
having to deal only with abstract attributes of the characters instead of images
increases the number of input neurons and adds additional complexity. Instead of
simplifying the data set, a transformation on the range of the integer values of the
attributes from the current 0-15 scale to a 0-1 scale could drastically improve
performance even on a shallow neural network. Because of the way back propagation
works, higher values have a larger impact while training neurons, which heavily
skews results in favor of higher values, thus scaling the values down to a range of 0-1
would solve this skew and possibly improve accuracy of the neural network.

What’s even more disappointing is the results from the deep neural network.
Achieving approximately the same results as random guessing would, despite various
methods for improving accuracy, I concluded that this data set is simply too small for
a deep neural network to be appropriate to be used here. Given the improvements that
could be made to the results of a shallow neural network, it seems likely that a deep
neural network is not ft for the task of accurately classifying this data.

 Further research could be conducted into diferent optimizer algorithms, activation
functions as well as evaluation metrics. The current combination of SGD, Linear
activation and cross-entropy as a loss metric though common may not be the best ft
for this data. Through the deep neural experiments we have shown that deeper neural
networks do not corrospond with higher accuracy rates, and that for some problems, a
better solution is to use shallow neural networks.

5. References

1. Feng-Hsiung Hsu (1995)
https://ieeexplore.ieee.org/abstract/document/755469/ IBM's Deep Blue
Chess grand master chips. IEEE Micro (Volume: 19, Issue: 2) ISSN: 0272-
1732

2. How Google’s AlphaGo beat a Go World Champion (2016)
https://www.theatlantic.com/technology/archive/2016/03/the-invisible-
opponent/475611/

3. Alan Turing (1950) https://link.springer.com/chapter/10.1007/978-1-4020-
6710-5_3 Computing Machinery and Intelligence

4. P. W. Frey and D. J. Slate (1991).
https://link.springer.com/article/10.1007/BF00114162 "Letter Recognition
Using Holland-style Adaptive Classifers". (Machine Learning Vol 6 #2
March 91)

5. Nele Verbiest, Sarah Vluymans, Chris Cornelis, Nicolás García-Pedrajas and
Yvan Saeys (2016) https://www-sciencedirect-
com.virtual.anu.edu.au/science/article/pii/S1568494616301247 Improving
nearest neighbor classifcation using Ensembles of Evolutionary Generated
Prototype Subsets

6. Pytorch Weight Pruning https://github.com/wanglouis49/pytorch-
weights_pruning

7. Pytorch tutorial https://github.com/MorvanZhou/PyTorch-Tutorial
8. Pytorch docs https://pytorch.org/docs/stable/nn.html
9. Xioli Z. Fern and Carla E. Brodley Clustered Ensembles for high

dimensional Clustering: An Emperical Study

https://link.springer.com/article/10.1007/BF00114162
https://pytorch.org/docs/stable/nn.html
https://github.com/MorvanZhou/PyTorch-Tutorial
https://github.com/wanglouis49/pytorch-weights_pruning
https://github.com/wanglouis49/pytorch-weights_pruning
https://www-sciencedirect-com.virtual.anu.edu.au/science/article/pii/S1568494616301247
https://www-sciencedirect-com.virtual.anu.edu.au/science/article/pii/S1568494616301247
https://link.springer.com/chapter/10.1007/978-1-4020-6710-5_3
https://link.springer.com/chapter/10.1007/978-1-4020-6710-5_3
https://www.theatlantic.com/technology/archive/2016/03/the-invisible-opponent/475611/
https://www.theatlantic.com/technology/archive/2016/03/the-invisible-opponent/475611/
https://ieeexplore.ieee.org/abstract/document/755469/

10. Unsupervised Clustering Of Temporal Patterns in High-dimensional
Neuronal Ensembles Using a Novel Dissimilarity Measure Lukas
Grossberger-Francesco Battaglia-Martin Vinck – 2018

	10. Unsupervised Clustering Of Temporal Patterns in High-dimensional Neuronal Ensembles Using a Novel Dissimilarity Measure Lukas Grossberger-Francesco Battaglia-Martin Vinck – 2018

