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Abstract.  Shallow/deep feed forward neural networks were trained using the
back propagation algorithm on a large categorization data set of 20,000 unique
letters  to determine how well this task could be executed by a machine learning
algorithm. The deep neural network employed a scheduler, mini-batches as well
as  drop out  algorithms.  The parent  data  set  was generated  by distorting  26
uppercase letters from 20 diferent fonts and were then summarized into 16
numerical attributes. Diferent sizes, learning rates and network topologies were
tested to fnd optimal results, which are evaluated using an accuracy measure
and  some cases a confusion matrix. The results of using a deep neural network,
with  all  these   additions  were  quite  abysmal,  with  only  a  3.64%  testing
accuracy.  The  shallow  neural  net  performed  signifcantly  better  without
optimizations on the data set with 13.5% accuracy. 
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1. Introduction

Since the dawn of computing human beings have been trying to get computers to
perform complex tasks at a competency level that  is indistinguishable from actual
humans (turing test3). While computers have easily been able to outperform humans
at certain tasks (memory, computation), only in the last two decades have computers
become masters of complex games such as Chess (Deep Blue1) and Go (AlphaGo2),
that humans were previously undefeated in. These class of problems can be split into
two  diferent  components  –  Understanding  the  current  state  of  the  situation
(categorization), and applying a string of actions which leads to benefcial outcomes
(decision-making).  The  broad  feld  of  computing  commonly  referenced  to  as
“Machine Learning” (ML) has lead the charge against humanity in many of these
endeavors.  However  utilizing  these  algorithms  required  either  vast  amounts  of
computing power or huge swaths of data or both. In recent years the advancement in
computing  power  and  the  proliferation  of  data  has  sparked  a  renewed  interest  in



machine learning algorithms, making them common, everyday options available on
over a billion devices. The application of neural networks to the frst component of
these problems,  that  is  the ‘categorization aspect’,  is  not new, however  their high
success  rates  across  various  diferent  categorization  problems  (LINKS)  in  recent
history has made them a popular option for solving such types of problems. 

This research paper focuses  on using a supervised learning algorithm or neural
network,  to  categorize  a  large  number  of  examples  presented  to  the  network
appropriately. I wanted to test how accurately a relatively small neural network (less
than 5 layers)  and a deeper neural  network (with 7 fully connected layers)  would
perform on a complex data set with many examples, even though the data set may not
be large enough for such a deep neural network. The data set I chose to use in this
paper  was  acquired  from  the  UCI  Machine  Learning  Repository
(http://archive.ics.uci.edu/ml/datasets/Letter+Recognition).  I  chose  this  data  set
because of the (20,000) size of the data set as well as it’s complexity. The original
paper4 that  utilized this data set  dates  back to 1991, and is using a very diferent
method to solve the classifcation problem. Instead of relying on neural networks Frey
and Slate decided on using Holland-Style adaptive classifers. They utilize fuzzy logic
and rule-based systems to classify the data set to high degrees of success (at best they
achieved  80%  classifcation  accuracy)  and  so  I  wished  to  compare  small  neural
networks  against  their  previous  attempts.  Other  papers  that  use  this  data-set  as  a
classifcation problem also exist and use a variety of methods, both supervised and
unsupervised with somewhat successful results. 

2. Data Set Attributes

This data set  contains  20 diferent  fonts which represent  fve diferent  types of
stroke styles (simplex, duplex, triplex, complex and Gothic) and six diferent letter
styles (block, script, italic, English, Italian and German). Covering a large amount of
diferent stroke and letter styles adds diversity to our data set which helps to  represent
“real world data” accurately. Furthermore each character image was distorted along
one of various axis. Characters could be linearly magnifed, have their aspect ratio
changed (horizontal magnifcation) and be horizontally or vertically “warped”.  This
distortion  considerably  increases  the  complexity  of  the  data  set  which  is  part  the
reason I ended up choosing it as a complex data set raises many challenges for a
shallow neural network. 

To  produce  the  resulting  data  set  that  was  used  as  input,  each  character  was
condensed down to 16 integer attributes scaled to an integer range of 0-15. These
attributes are available in the original paper and will not be copied here for brevity
sake. However I will include that from these attributes the original character cannot
be uniquely determined,  as these attributes are mostly diferent  means that can be
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calculated from the letters “on” pixels. This creates further challenges for the neural
network to correctly classify the data as it does not have the original image of the
character to go of of, but instead attributes of the character. 

Finally there were some transformations I applied to this data set to make output
easily classifable for the neural network. Of the 20,000 samples in the data set I split
them into two diferent sets for testing and training. The training data set contains
15000 of the original samples and the testing data set contained the remaining 5000.
Given the large  size of  the data set  I  thought this  was a fair  split  for  our neural
network, though it is worth noting that the original paper had a training set of 16,000
and testing set of 4000.

Also transformed was the character output. Originally each of the character outputs
was referenced by letter, and I transformed this to an integer range of 0-25 to include
all 26 characters of the alphabet for ease of classifcation for the neural network. 

For the deep neural networks the range of all the attributes was scaled down to be
between 0 – 1. This scaling was applied so that larger  weights do not carry more
signifcance in the network. It should have also been applied to the shallow neural
networks. 

3. Description of the Neural Networks

A variety of diferent network sizes, structures and training times and parameters
were tested to see which would produce the best  output for the shallow network.
However for all these networks were trained with Stochastic Gradient Descent (SGD)
as an optimizer, and performance was evaluated using cross-entropy, and since this is
a  classifcation  problem,  these  are  the  standard  choice  of  algorithm.  The  same
optimizer and loss algorithms were used for evaulation of the deep neural network,
however  there  were  additional  algorithms  used  to  further  optimise  training  time,
performance and improve resiliency of the network. The deep neural network utilized
mini-batches, drop out layers, as well as a scheduler to vary learning rate.

Deciding  upon  the  number  of  input  neurons  and  output  neurons  was  fairly
straightforward for both shallow and deep neural networks. Each attribute had one
neuron assigned to it, resulting in 16 input neurons. There were 26 output neurons
each relating to one letter of the alphabet. Choosing the number of hidden neurons
was the subject of much experimentation during the shallow neural network phase of
this paper. The results of the experimentation are captured in the table below.



Hidden 
Neurons

Learning Rate Epochs Testing 
accuracy

12 0.01 500 4.32%

24 0.01 500 5.46%

48 0.01 500 6.4%

96 0.01 500 2.95%

50 0.01 500 5.4%

44 0.01 500 5.1%

48 0.01 1000 6.78%

48 0.01 2000 5.5%

48 0.01 4000 7.12%

48 0.01 10000 13.55%

48 0.02 3000 13.19%

48 0.03 3000 7.9%
Results of experimentation with a shallow single hidden layer neural networks

Having then exhausted the possibilities of tinkering with parameters of a single
hidden  layer  neural  network  I  moved  on  to  exploring  the  outcomes  of  a  neural
network with two hidden layers with an epoch size of 3000. I decided to split the 48
single layer into two layers each consisting of 24 neurons each. This performed far
below expectation with a testing accuracy of 1.24%. Assuming I had far too many
neurons I dropped the number of neurons in the frst layer to 18 and the second layer
to 12, producing marginally better results at 4.56% testing accuracy. Moving on to a
neural network with 10 hidden neurons in the frst layer and 8 in the second layer
resulted in further marginal improvements with an accuracy rate of 5.89% in training
and 5.3% during testing. Going below this with 8 neurons in the frst hidden layer and
6 in the second led to a much reduced accuracy of only 2.4%. 

For implementation of the deep neural network, I frst scaled the values in each of
the attributes to be between 0 – 1 and I decided on frst using 5 layers each with
between 60 – 200 neurons. In order to overcome the vanishing gradient problem I
used  ReLUs as  the  activation  function  instead  of  the standard  sigmoid  activation
function. During training I noticed that many of the ReLUs were “dying” (ie, they
remained  0 forever)  in  layer  1.  Because  of  the way back  propagation  works,  this
implied that there were dead ReLUs further down the neural  network. In order to



remedy this, I tried a variety of diferent activation functions, including leaky ReLUs,
RreLUs,  and  Hardtanh.  However  even  after  solving  the  dead  ReLU problem,  the
accuracy of the neural network was very low. I then decided to lower the number of
neurons in each layer, but kept the frst layer larger than the rest. The intuition behind
this is that the frst layer will have various simple properties to understand and the
later layers will use these simple properties, and won’t need to come up with as many
complex ones. Still the accuracy rate was abysmal. In order to improve this, I then
implemented some other functions,  including utilizing mini-batches during testing,
implementing a scheduler  to change the learning rate as the epochs progress,  and
implementing some drop out layers. Despite all these additional improvements, the
accuracy remained pityfully low, lower than even the shallow network, at a maximum
of just 4.67%. Having reached my wits end, I concluded that the data set was simply
too small and not varied enough for a deep neural network to performally efectively. 

4. Results and Future Work

Comparing results to various other studies that utilized the same data set with very
diferent methods, the outcome of uing neural networks on this data set leaves a lot to
be desired. With other papers getting accuracy of over 80% while utilizing “older”
methods such as  clustering  and decision  trees,  neural  networks should be  able to
perform better on this data-set. 

What the results above defnitively prove is that there is much more work to be
done with this data set when it comes to neural networks. Achieving only a measly
13.5% accuracy at best is disappointing. This was achieved through an epoch size of
3000,  48 hidden neurons  and a  learning rate  of  0.02,  using the  back  propagation
algorithm with SGD as the optimizer and cross-entropy as the evaluation. While this
does ft my description of a shallow neural network and had a short training time, the
performance leaves a lot to be desired.

There are a few reasons that performance was sub-par. For one the high complexity
of the data set makes it inherently difcult for a shallow neural network to work with.
The large  number  of  diferences  between  examples  of  the  same class,  as  well  as
having  to  deal  only  with  abstract  attributes  of  the  characters  instead  of  images
increases  the number of input neurons and adds additional complexity.  Instead of
simplifying the data set, a transformation on the range of the integer values of the
attributes  from  the  current  0-15  scale  to  a  0-1  scale  could  drastically  improve
performance even on a shallow neural network. Because of the way back propagation
works,  higher  values  have  a  larger  impact  while  training  neurons,  which  heavily
skews results in favor of higher values, thus scaling the values down to a range of 0-1
would solve this skew and possibly improve accuracy of the neural network.



What’s  even  more  disappointing  is  the  results  from  the  deep  neural  network.
Achieving approximately the same results as random guessing would, despite various
methods for improving accuracy, I concluded that this data set is simply too small for
a deep neural network to be appropriate to be used here. Given the improvements that
could be made to the results of a shallow neural network, it seems likely that a deep
neural network is not ft for the task of accurately classifying this data. 

 Further research could be conducted into diferent optimizer algorithms, activation
functions as  well  as  evaluation  metrics.  The current  combination of  SGD,  Linear
activation and cross-entropy as a loss metric though common may not be the best ft
for this data. Through the deep neural experiments we have shown that deeper neural
networks do not corrospond with higher accuracy rates, and that for some problems, a
better solution is to use shallow neural networks. 
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