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Abstract. The study evaluated four wilderness areas in the Roosevelt National 
Forest, located in the Front Range of northern Colorado. We use a series of 
multi-layer perceptron (deep neural networks model) predicted forest cover 
type. Compared with the first assignment, I increased the depth of the neural 
network, adopted a new activation function(Relu), added Softmax function in 
the output layer and adopted batch in the training, which greatly improved the 
training speed of the network. The final accuracy rate on test data increased by 
14% compared to the previous one. Also got closer to the performance in the 
paper published. 

Keywords: MLP, deep neuron network, batch, Relu, forest cover type, 
prediction 

1   Introduction 

Accurate natural resource inventory information is vital to any private, state, or 
federal land management agency. Forest cover type is one of the most basic 
characteristics recorded in such inventories. Generally, cover type data is either 
directly recorded by field personnel or estimated from remotely sensed data. Both of 
these techniques may be prohibitively time consuming and:or costly in some 
situations. Furthermore, an agency may find it useful to have inventory information 
for adjoining lands that are not directly under its control, where it is often 
economically or legally impossible to collect inventory data. Predictive models 
provide an alternative method for obtaining such data. 

Artificial neural networks are ‘‘computing devices that use design principles 
similar to the design of the information-processing system of the human brain’’ [1]. 
Several recent textbooks describe the mechanics of ANNs [2,3,4,5,6]. Recent 
publications involving artificial neural networks being applied to natural resources 
topics include: modeling complex biophysical interactions for resource planning 
applications [7]; generating terrain textures from a digital elevation model and 
remotely sensed data [8]; modeling individual tree survival probabilities [9]; and 
Harvey and Dean [10], who used geographic information systems (GIS) in developing 
computer-aided visualization of proposed road networks. Recent comparisons in 
which ANNs performed favorably against conventional statistical approaches include 
Reibnegger et al. [11], Patuwo et al. [12], Yoon et al. [13], Marzban and Stumpf[14], 
Paruelo and Tomasel [15], Pattie and Haas[16], and Marzban et al. [17]. 



However, artificial neural networks do not always outperform traditional predictive 
models. For example, Jan [18] found a traditional maximum-likelihood classifier 
outperformed artificial neural network models when classifying remotely sensed crop 
data. 

This study examined the ability of an ANN(multi-layer Perceptron) model to 
predict forest cover type classes in forested areas that have experienced relatively 
little direct human management activities in the recent past. The predictions produced 
by the MLP model were evaluated based on how well they corresponded with 
observed cover types (absolute accuracy). 

2    Data Set and Model Design 

2.1   Data Set  

  We download from http://archive.ics.uci.edu/ml/datasets/Covertype. 
The seven forest cover type classes used in this study were lodgepole pine (Pinus 

contorta), spruce/fir (Picea engelmannii and Abies lasiocarpa), ponderosa pine (Pinus 
ponderosa), Douglas-fir (Pseudotsuga menziesii), aspen (Pop-ulus tremuloides), 
cottonwood/willow (Populus angustifolia, Populus deltoides, Salix bebbiana, Salix 
amygdaloides), and krummholz. 

Both soil type information and wilderness area designation were obtained from the 
USFS. These qualitative variables were treated as multiple binary values. This 
resulted in a series of variables for each raster cell, where a value of ‘0’ would 
represent an ‘absence’ and a value of ‘1’ would represent a ‘presence’ of a specific 
wilderness area or soil type. A total of four wilderness areas and 40 soil type classes 
were used in this study, producing four wilderness area designator variables, forty soil 
type designator variables, and ten continuous variables for a total of 54 possible 
independent variables available for each model. 

Headings. For this study, three mutually exclusive and distinct data sets were created 
to train, validate, and test the predictive models. A training data set was used to 
develop classifiers for both the artificial neural network and the discriminant analysis 
predictive models. Number of observations for each data set are given in Table 1.   

The first extracted set contained 348607 randomly selected observations (60% of 
total observations) and became the training data set. 

The second data set extracted from the remaining data contained 116202 randomly 
selected observation (20% of total observations) and became the validation data set. 

All variables in the three data sets used by the artificial neural network model were 
linearly scaled to lie in the range between zero and one. 

 



Table 1.  Number of observations for each data set  

Train data set size validation data set size Test data set size 
348607 116202 116203 

2.1   Model Design  

loss function(MSE): 

 
(1) 

where E(w) is the mean square error term, w are the synaptic weights to be 
estimated, N is the number of observation (input) vectors presented to the network, n 
is a single observation vector, k is the number of output nodes, i is a single output 
node, d_i (n) is the observed response and y_i (n) is the predicted response for 
observation n and output node i. The N observation vectors constitute a training data 
set, which is used specifically to ‘teach’ the network to recognize the relationships 
between the independent and dependent variables (e.g. to develop a classifier). This 
classifier will consequently be used to predict class membership for other vectors of 
input variables not included in the training data set. Theoretically, the back-
propagation algorithm ultimately finds a set of weights w that minimizes E(w). 

All artificial neural network models in this study had fully connected input, hidden, 
and output layers (i.e. each node in layer m was connected to all nodes in layer m+1). 
The generalized delta rule with gradient descent (commonly used with the 
backpropagation learning algorithm) was utilized in each network’s learning process. 
The activation function for each network’s input layer was linear [ f(x)= x], while 
hidden utilized Relu activation functions, and output layers utilized softmax 
functions. Adam was used as the optimization algorithm. Initial synaptic weights were 
randomly selected between negative one and positive one, based on a random seed 
and no input noise. All input variables were linearly scaled to lie in the range between 
zero and one. 

 
Training patterns were presented to the network in a random order, with an update 

of the validation data set MSE at an interval of every ten epochs through the training 
data set. Training was halted after either  

(1) a minimum of 100 training epochs had been completed 
(2) a validation MSE of 0.05 was reached, or 
(3) it was subjectively determined that the validation MSE would not significantly 

decrease with further training epochs. 
Two hidden layers were used in all of the artificial neural networks developed in 

this study. The numbers of nodes in these two hidden layers were systematically 
changed across 8 possible values while holding constant the learning rate (LR). The 
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Relu activation function was adopted and batch method was used in the training 
process. 

This procedure identified the number of hidden nodes which produced the 
minimum error (MSE) of the validation data set under the original LR. The number of 
hidden nodes was then held constant and the LR parameter were sequentially changed 
to find the best combination of network architecture and training parameter values for 
this data set. Fig 1 shows the 2 hidden layers neuron netwotk. Table 2 lists the various 
architectural and training parameter values investigated in this study.  

 

 
Fig. 1. The construction of the artificial neuron network. 

Table 2.  Artificial neural network architectural and training parameter values  

Step 1: Select the optimal number of hidden nodes parameter from 8 possible values while 
holding constant LR=0.01 
Hidden1 
nodes 

10 20 30 50  100 150 20
0 

30
0 

       

Hidden2 
nodes 

10 20 30 50  100 150 20
0 

30
0 

       

Step 2: Hold the optimal number of hidden nodes parameter value (selected from step 1) 
constant, and determine the optimal learning rate (LR)  
Learning rate 0.0005 0.001 0.005 0.01 0.05 0.1  -    

 
 

3   Results and Discussion 

The MSE values across all 8(the published paper is 14. Because in our experiment, 
8 were selected and we achieved the best at around (50,50) epoch) different numbers 



of hidden nodes from the 54 variable ANN models are shown in Fig. 1. Each of these 
networks held the LR at 0.01, respectively. This figure shows that roughly 50 hidden 
1 nodes and 50 hidden 2 nodes (the published paper is 120 of only one hidden layer) 
were necessary to minimize the MSE in these networks.  

 

Fig. 2. MSE for the different numbers of hidden nodes for the 54 variable ANN 
models (optimal value for this model is 50 hidden 1 nodes and 50 hidden 2 nodes).  

 



 
Fig. 3. MSE of the validation data set for the 54 variable ANN models with 50 hidden 
1 nodes and 50 hidden 2 nodes (optimal values for this model are a learning rate of 
0.005). MSE values are shown by learning rates (symbols) and are equal along 
concentric lines of the plot.  

Once the ‘best’ number of hidden nodes was identified, the learning rates and 
momentum rates were sequentially changed to determine optimal values for these 
parameters. Fig. 3 displays a plot of the resulting MSE values for 6 different 
candidate networks, all with 50 hidden 1 nodes and 50 hidden 2 nodes. And we found 
the network model with the lowest MSE was produced with an LR of 0.005. 

As shown in Table 3, the MLP predictions of forest cover type produced an overall 
classification accuracy of 78.5221%. (the best model, LR=0.005, hidden 1 nodes=50, 
hidden 1 nodes=50) 

In comparison, Table 4 presents the XGBoost algorithm results obtained from the 
test data set. The overall classification accuracy for the XGBoost algorithm model 
was 87.0029%. 

 

Table 3.  MLP matrix for the test data set  

  predict label 
MLP observed 33140 8629 0 0 84 11 1070 

8457 46570 319 0 1279 293 21 
21 771 6221 257 71 1505 8 
3 2 95 253 0 36 0 
41 123 0 0 459 0 0 
36 725 443 26 40 1604 0 
520 75 0 0 0 0 2998 

 



Table 4.  XGBoost algorithm matrix for the test data set  

  predict label 
Xgb 
model 

observed 35472 6519 2 0 24 6 195  
5458 50897 211 0 117 192 20  
2 256 6484 46 1 286 0  
0 0 61 455 0 20 0  
17 667 43 0 1190 16 0  
8 193 356 22 0 2870 0  
350 14 0 0 1 0 3732  

4   Conclusion and Future Work 

Compared with the first assignment, the new deep neuron network and new 
activation function greatly improved the performance of the network. And the batch 
method in the training method make the training speed much faster than Assignment 
1. The final accuracy rate on test data increased by 14% compared to the previous 
one. From the experimental results, However, XGboost algorithm in the paper is still 
better than MLP, to improve the model through: 

1. Try other neuron network structures. 
2. Try other loss function, such as cross entropy. 

 

3. Add dropout to deal with overfitting. 
4. Add more training data. 
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