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Abstract. Neural networks(NNs) has become a trending field of study with rapid technological growth and
development in the field of Machine Learning and Artificial Intelligence. Neural network has gained world over
popularity from its beginning with the introduction of Feed Forward NNs. Many researches were conducted with the
help of Feed Forward NNs to solve challenging real world problems having only few neurons in the middle layer, so
called the “hidden layer”. When the results were analysed, it was found that having more hidden units yielded better
results in terms of accuracy but increased overall execution time with its dense structure. To overcome this problem,
researchers came up with the idea of multiple hidden layers network called the Deep Neural Network (DNNs) which
distributed the neurons among various hidden layers. But the problem of increased execution time persisted and also
hindered the performance of learning in Neural Network. It was later observed by experiments that not all neurons in
the hidden layer between the input and output layers were actually contributing to the final outcome of the learning.
In such a case, those particular hidden units in the hidden layer can be found and muted that would help neural
network to have a performance boost during the network learning. Finding and muting neurons can be employed by
using various strategies but this paper is concentrated on technique called “Badness” i.e., muting the neuron which
has the maximum back propagated error. Incorporating badness technique into the Deep Neural Network
implementation yielded more performance and speed retaining the same solution compared to those without it.
Accuracy of the network before and after incorporating badness technique remained approximately same around 97%
when testing across unknown test samples with loss climbing down to 0.01 from being 2 during the start of network
learning. The main aim of this paper is to boost the performance of the neural network without compromising
solution accurateness.
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1 Introduction

According to (Gedeon and Harris), Deep Neural Network is considered to implement badness technique
employing five layer network structure. It consists of one input layer, three middle hidden layers and one
output layer. Succeeding from input layer, each layer is connected in sequence to other layers until output
layer with each having weighted units connected to all other weighted units in hidden layer. Important
reason for this type of connection is to extract the features from the input data, assign them with weights
and propagate it equally among the connected units in the network. The final output layer classifies the
input data into classes specified in the dataset. Here the layers are defined as the linear tensors with its
shape depending on the number of features for the input layer, number of hidden neurons for the hidden
layer and number of classes to be classified for the output layer. Added, sigmoid function is used as the
activation function for weights propagating from hidden layer to output layer. Training the network using
back propagation technique makes the NNs to train slower because as the network proceeds with
execution, output error gradient increases and weight calculation becomes complex for certain units in the
hidden layer ultimately resulting in lower performance. Output error gradient plays an important role in
optimization for deciding the performance of the network by manipulating the weights getting transferred
from one layer to other. Having the neural network configured, the next important thing required is the
dataset for which this classification task is to be performed. The chosen classification system involves in
the dataset which is used to identify the type of erythemato-squamous diseases(Archive.ics.uci.edu, n.d.).
The main motivation to choose the dataset is to explore the medicinal field usage of NNs where the output
layer classifies the dataset as either psoriasis, lichen planus, cronic dermatitis, pityriasis rubra pilaris,
pityriasis rosea and seboreic dermatitis(Archive.ics.uci.edu, n.d.). Diagnosing this disease was initially
meant to occur using biopsy but it was found that it needs histopathological features too which was then
determined through the usage of microscope. Twelve clinical features and twenty two histopathological
features are considered for constructing this dataset. This feature set contains family history column of
data with values ranging from 1 ( if history of disease is observed) and O otherwise, age representing the
age of the patients and other columns of data with values from O to 3 where O represents the presence of
no trace of disease and 3 represents the highest trace.



2 Dataset Configuration

According to Archive.ics.uci.edu, the dataset contains total instances of three hundred and sixty six which is randomly
split into train set and test set with each contributing 85% and 15%.The technique of cross validation is employed to
split them. This dataset also contains 34 features overall that are used to classify them among one of the six classes

3 Methods in Experiment
To implement the “Badness” technique, Deep Neural Network is employed with five layer network structure. Input data

is extracted from csv file and are then wrapped up in the tensor to feed into the input layer of the Neural Network. Here,
I have considered,

Layer Name Data Size

Input Number of features x Number of instances in dataset

Hidden first Number of instances in the input dataset times x Number of hidden unit connections in hidden
layer.

Hidden Second | (Number of hidden unit connections in hidden layer ) x (Number of hidden unit connections in

hidden layer / 2)

Hidden Third ( Number of hidden unit connections in hidden layer / 2) x ( Number of hidden unit connections
in hidden layer /4 )

Output ( Number of hidden unit connections in hidden layer /4 ) x (Number of output classes + 1)

The main reason for choosing three hidden neurons in the network structure is because to gradually reduce the network
connections from the first hidden layer network to the output layer. Various hyper parameters like learning rate as 0.1
and number of epochs as 2000 is all chosen because including all these parameters, loss is minimized at the end of
training considerably, say for example in the beginning it was around 2 and reduces down to 0.01 at the end and
accuracy is also greatly improved (more than 95%) compared to its beginning step of 20%. Various experiments were
done before concluding with this learning rate and number of epochs like initially learning rate was fixed with 0.001 and
number of epochs were around 200 only. When running with these parameters, it was found that network learning was
slower. Then it was decreased to 0.1, network learning was made faster but accuracy remained lower around 86%.
Applying brute force approach of increasing the number of epochs gradually, increased the accuracy with loss incurring
very minimal value. Carrying out brute force experiments, it was found that 2000 epochs yielded results around 98%.
Hence the learning rate and number of epochs was fixed. Output layer consists of seven classes with zeroth class being
assigned with no classification results and class from one to six with classified results. Here, the network is initialized
with five layers with each propagating weights to the next layer till it reaches the maximum accuracy by minimizing the
loss incurred. Once the network is declared with tensors and initialized with weights obtained from the dataset, the
forward function(net) is called. This forward function computes the weight from input data in the input layer and sends
it across all the connection units in the first hidden layer. Since the first hidden layer is dense compared to the other
hidden layers in the network, there is more chance of high mathematical computations happening. It was found that
tweaking the hidden neuron in the first hidden layer can create a drastic change in the network learning as this provides
the starting point for network learning. Many researches have been conducted in deciding the number of hidden neurons
to be present in the hidden layers which corresponds directly to either input layer or its previous hidden layer or output
layer. According to Sheela K. and S.N, 2013, network stability depends mostly on the error gradient propagated from
the hidden to output layer. If the error gradient is more for a particular hidden unit, then there is more chance that it will
deviate the network from obtaining optimal result. Also, if the network has more neurons, the network size increases
leading to much higher arithmetic operations leading to increase in computational cost often leading to overfitting of
training data(Augasta M. and T, 2018).

3.1 Muting Neurons



To overcome the overfitting of input data, most error prone gradient unit has to identified and muted in such a way that
the highest error values are not transmitted in the network ensuring the reliability in the final classification results.
Finding the most error prone hidden unit is implemented in the forward function according to, “Sum of cumulative back
propagated error = summing of weights in the given row of elements in the hidden layer”’. Muting the hidden neuron is
implemented in the first hidden layer such that highest error prone unit is cut off at the beginning of weight propagation
itself. Once the hidden neuron with maximum error is found, then its corresponding weighted values are assigned with
value zero(muting). Once the corresponding row elements of the found hidden neuron is assigned with zero values, all
the weighted connection from that neuron to the succeeding ones carry only zero value. Since the weighted connection
is the multiplication of weights of various neuron values, its contribution becomes null helping the network to push
towards the optimal solution than leading to local minima or maxima. This method creates tolerance in the network
such that the contribution of other hidden units in the hidden layer is maximized. To calculate the error gradient,
CrossEntropyLoss() is used. When the predicted probability of input labels are diverged from obtained label from
training, cross entropy loss increases and vice versa(Ml-cheatsheet.readthedocs.io, n.d.). Once the loss is calculated, the
network is instantiated with zero gradients and the error is propagated back to the hidden layer and the gradient weights
are accumulated. Finally, Stochastic Gradient Descent optimiser(SGD) is called to minimize the objective function
leading to faster convergence. This helps to reduce the high cost incurred by the back propagation in the neural network.
Finally it uses the Softmax function to classify the dataset based on the classes desired by assigning probability values to
every classes (Ufldl.stanford.edu, n.d.). For example, if a test image is to be classified as Dog or Cat, the neural network
outputs the probability of test image for both Dog and Cat. This probability value is compared with the threshold and
test image is classified accordingly.

4 Results and Discussions

Implementing the Deep Neural Networks without muting the higher error gradient hidden unit and those with muted
gradient unit produced similar results in accuracy with negligible difference of +/- 1 to 2. Similar accuracy is the first
evidence that the Badness technique doesn’t alter the meaning of doing this experiment. If the accuracy was changed,
then it could have given a hint that not only that more error prone hidden unit was getting muted, but also some
contributing hidden neurons. The main motivation for this paper is to retain the accuracy at the highest value possible
and at the same time reducing the computational costs in the network. Implementing the Badness technique in Deep
Neural Network resulted in performance boost of 1.2X (means Normal execution was 40 seconds but with badness
implementation, it resulted around 37 seconds) as high cost arithmetic operations caused by most error prone gradient
units are muted. This performance boost became more evident as the number of hidden neuron increased and as the
number of epochs increased leading to number of hidden neuron count in first hidden layer. Since this layer was dense,
it was reduced to half in second hidden layer and by quarter in the third hidden layer. Muting the selected hidden units
greatly helped the neural network to converge faster towards the local minima that guaranteed to reach global minima at
the end of training. Convergence of weights may get stuck in local minima or becomes harder to even reach local
minima if there are more cumulative error gradient unit in the network. Added, implementing badness also ensures that
the data doesn’t overfit into the training set as more the hidden neurons present in the network, there is more chance of
network getting overfit with training samples. Finally, Cross validation ensures that the data considered for training and
testing is taken in random order to maintain the generality of the network training. Comparing the implementation of
Badness on Dermatology dataset with research paper by (Pappa, Freitas and Kaestner, n.d.), we can find out that the
overall loss value is marginally lower. Loss obtained without muting and with muting the higher error gradient graph is
displayed below in Figure 1 and Figure 2.
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Figure 1 : Without muting the hidden neuron Figure 2: Muting the hidden neurons
4.1 Graph

Here the graph is constructed using the Figure() in Python Imaging library. Here the X-axis corresponds to the Number
of epochs the network took and Y-axis corresponds to the Loss incurred the network during the feature learning. The
spikes in the graph represents that earlier the number of iterations, higher the loss value. When the experiment started at
zeroth epoch, the loss value is more and it gradually decreases as the network starts to learn the feature. The spikes
during the end of the network learning also symbolizes the fluctuation of loss value calculation due to the removal of
hidden neurons having the highest error prone gradient.

5 Conclusion and Future Work

This work proposed the Badness algorithm for optimizing the Deep Neural Network having bigger network size. The
error gradient calculation and loss graphs (Figure 1 and Figure 2) shows almost no difference between them indicating
that solutions is not compromised after training. The main aim of this paper is to achieve the performance boost during
training which is summarized to be 1.2X than the basic Deep Neural Network. without Badness implemented. This
paper illustrates that muting the higher error gradient in the neural network once in every fifty epochs actually resulted
in good performance boost. The reason behind doing the muting once every fifty epochs is because that the network
would have learned considerable amount of features contributing not only to the final result but as well as to the error.
Muting neurons once every fifty epochs ensures that the learning curve diverges to minimal loss. Currently, I am
evaluating this technique by conducting series of experiments with different dataset to illustrate the performance boost
of network training and also in retaining the muted neuron to ignore the gradient passed on from its back propagation.
Overall, the Badness technique doesn’t affect the end accuracy as this technique is not about changing the final
classification results but it helps in diverging to the optimal solution faster. In this paper, highest error gradient hidden
unit is muted such that it stops from further contributing to the actual classification results whereas in future it can be
expanded to removing the hidden neuron from the network structure. This also ensures that the gradient of that neuron
will have no effect on the classification results.
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