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Abstract. In this paper, I constructed a feed-forward neural network with a non-specialized architecture to solve 
classification problem. Later I reduced the neural network by applying the distinctiveness analyze method and the 
evolutionary algorithm pruning method. Both pruned networks still guarantee a consistent quality without need of further 
training. As the pruning rate increases, the distinctiveness analyze method’s classification accuracy slightly decreases, while 
the evolutionary algorithm pruning method still keep a high performance on classification accuracy. Comparing the 
performance with other paper which used the same dataset. The Linear Discriminant Analysis classifier has the best 
performance on classification accuracy than other classification methods, followed by my evolutionary algorithm pruned 
neural network’s performance, while the K-Nearest Neighbors (3) classifier has the worst performance, and has the highest 
classification error. 
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1 Introduction 
 
 
In this report, I solve a classification problem by modeling and training a neural network. After the basic classification 
functionality be implemented, I prune the network by removing the hidden units that with redundant functionality after 
training. The neural network automatically locates and removes the redundant hidden units by implementing a distinctiveness 
automatable process which is mentioned by Gedeon and Harris [1], and the neural network automatically adjust networks 
weights, so the pruning trained network still guarantees a consistent level of functionality of hidden units and without the 
need for further training. In order to evaluate how the performance of distinctiveness method different with the performance 
of other neural network pruning method, I implement a further evolutionary algorithm pruning method on the same basic 
classification network and on the same data set as the comparison. 
 
The neural network is a feed-forward network of three layers of processing units. All the connections are from units in one 
layer to each unit in subsequent layer, with a simple non-specialized architecture. The neural network uses stochastic gradient 
descent as the optimizer, sigmoid as activation function, and use the backpropagation to adjust the weight of neurons by 
calculating the gradient of the loss function. 
 
The neural network use the Leaf dataset [2] as the training and testing dataset, which has 16 attributes, 340 instances, and with 
no missing values. This dataset is suitable for my classification neural network, which can classify different leaf species by 
training the leaf species and leaf features attributes. I also measure the test dataset results on both original network and pruning 
trained networks, and compare the difference between their classification accuracy, confusion matrix, hidden layer size, 
pruning rate and consumed time. Performance of the pruning trained networks will be analyzed and evaluated base on those 
measured results. 
 
Getting a faster or a smaller neural network without impacting performance is important for training a bigger and deeper 
neural network on a device with limited hardware resources and power constraints [6]. The aim of this report is to implement 
the distinctiveness analyze method and Evolutionary Algorithm method of pruning a neural network, and to measure and 
evaluate the performances between original neural network and pruning trained neural networks.  
 
 
2 Method  
 
 
2.1    Data Set 



 
The dataset that I chose for the classification problem is the Leaf dataset [2] which is provided by UCI. This dataset has 16 
attributes, 340 instances, no missing values, and all the attributes in this dataset are in real number type. For the 16 attributes, 
the first attribute represents the Leaf Species and consists the number from 1 to 36, each number represents one Leaf Species 
(for example, number 1 represents ‘Quercus suber’, number 36 represents ‘Geranium sp.’, and so on). Each attribute from 3 
to 16 represents a Leaf Feature, in more detail, attributes 3 to 9 represents different leaf shapes, and attributes 10 to 16 
represent different leaf textures [3]. The second attribute represent the Specimen Number, which is irrelative to the leaf 
classification problem, so this attribute was dropped from both the training dataset and the testing dataset before I train the 
network.  
 
When I train the neural network, the Leaf Species in first attribute are to be treated as the leaf classification neural network’s 
outputs, and the 14 Leaf Feature attributes are to be treated as the leaf classification neural network’s inputs. Besides, 80% 
of the instances are used to train the neural network, and 20% of the instances are used to test the trained neural network. 
 
The reasons to choose this Leaf dataset are:  
 

• This Leaf dataset has enough instances and attributes for training and testing a neural network 
• This Leaf dataset has enough leaf’s features as inputs and leaf’s classes as outputs for a classification problem. 
• This report compares the original neural network’s performance with the pruning trained neural network’s 

performance by calculating the accuracy of classification, so a 36 classes dataset is better than a binary classes dataset. 
That is because, for the binary classes dataset, there is around fifty percentage to classify an instance correctly even 
if the network works not correctly. More output classes could reduce the possibility of irrelative factors impact the 
classification accuracy. 

• Because this report is mainly focus on the performance after a neural network’s size is pruned, a dataset only in real 
number type and with no missing values is enough for this neural network’s training and testing. The attributes’ type 
of the dataset will not greatly impact the pruning method that this report will use, and the pruned network’s 
performance. 

 
 
2.2    Basic Classification Neural Network’s Model Design 
 
For my basic classification neural network, I construct a three-layer neural network which comprises one input layer with 14 
neurons, one hidden layer with 100 neurons, and one output layer with 36 neurons. The 14 input neurons are for inputting the 
14 different leaf’s features, and each of the 36 output units is for one leaf specie. The hidden layer’s size is initialized to 100 
units, and for controlling the variables and for mainly focusing on the different performance between the original network’s 
size and reduced network’s size later, the bias is not used in the neural network’s structure. 
 
For pre-processing the dataset, I dropped the second irrelative attribute and update the data index, then randomly split the 
dataset into training set which uses 80% instances of the original dataset and testing set which uses 20% instances of the 
original dataset, and the same testing set is for testing both original network’s performance and pruned network’s performance 
later. The raw dataset is transformed to torch dataset, and the network will use Dataloader to read the data during the training 
process. 
 
The feed-forward neural network uses sigmoid function as the activation function, and uses stochastic gradient descent as the 
optimizer. The network use the backpropagation to adjust the weights by calculating the gradient of the defined loss function. 
The training process trains the network with 100 epochs and with the batch size 5. For every 50 epochs, the processing of the 
last epoch will be print. The training results will be present by using the measure results method which I will mention later. 
 
 
2.3    Pruning Neural Network Methods 
 
The investigation’s purpose is to find ways to reduce neural network’s hidden layer size and will not affect the quality of the 
network’s performance greatly. Small size network can save both training time and processing time, and more training 
iterations could be done in the same time for the smaller networks [4]. In this report, I implement two pruning methods to 
reduce the network size. The first method is to construct a neural network which can automatically detect the redundant units, 
the redundant units are measured and decided by the distinctiveness automatable process. The network then automatically 
remove those duplicative units and adjust the network’s weights, to minimize the negative effect of the pruned network’s 
performance. The second method is to implement an evolutionary algorithm method to prune the network. The network 



initializes a fixed size population of different hidden layers’ states, then does the evolutionary process to evolve the population 
until the limited number of generation reached. The neural network automatically replaces the current worst performance 
individual in the population by a better performance new child individual without further training. 
 
 
Distinctiveness analyze method 
 
Some hidden units have the similar functionality with some other hidden units in the same layer, units with redundant 
functionality after training can be removed. For the first method, I will focus on the distinctiveness property of hidden units, 
and will use this property to remove the redundant units [1]. The distinctiveness is determined from the hidden units output 
activations vector over the epochs, that is, for each hidden unit, I construct an output activations vector of the same 
dimensionality as the number of total epochs, to record one output activation for every epoch. And finally, I construct an 
activation_matrix to store all the output activations vectors of all hidden units after training the network, with the matrix size 
of number_of_hidden_units * number_of_epochs.   
 
However, in each epoch, the neural network will output training dataset’s size of activations for each unit, but I only want to 
get one activation from all the activations of each epoch, and to store this chosen activation into the final activation_matrix 
for the further operations. I randomly choose one activation from all the activations of each epoch. Because the instances’ 
order of the training dataset is set to random, the activation which will be chosen is the first instance’s hidden output activation 
of each epoch’s last batch. By this method, in each epoch, the network randomly get only one activation for each hidden unit 
to store into the final activation_matrix.  
 
After the neural network training, the network fulfills the activation_matrix. I got one epochs’ size of activations vector for 
each hidden unit. To recognize the similarity of pairs of hidden units, I made a method to calculate the angle between pairs of 
units’ activations vectors. If angular separation is below 15°, then the two units are considered too similar and one of them is 
removed, and the weights vector of the unit which is removed is added to the weights vector of the unit which remains. If the 
angular separation is over 165°, then the two units are considered complementary, and both are removed [1].  
 
This pruning method does not need any further training, so I stored the pruned weights of each layer and the pruned hidden 
layer size. Then I initialized a new neural network which is same to the original network, but with the stored pruned weights 
and stored pruned hidden layer size, as the pruning trained neural network. 
 
 
Evolutionary algorithm pruning method 
 
For the second method, I do not remove the similar functionality hidden units anymore, I use the evolutionary algorithm 
pruning method to initialize a fixed size population of random hidden layers’ states, calculate the fitness score for each 
individual, generate varied children from the population, and optimize the population to a higher fitness score trend. To 
compare with the distinctiveness pruning method, the evolutionary algorithm pruning method does not add the removed unit’ 
weights to the remained unit’ weights anymore, but reduce the hidden units’ size with a more free and straightforward way, 
that is, the method may have more possibilities to test more varied hidden layers’ states and the method just keeps or removes 
the hidden units without any further weights’ operations. 
 
To represent and store each individual’s hidden layer’s state and fitness score, I made an individual_score_matrix with 
population_size rows and hidden_size + 1 columns, each row represents one individual, and there are hidden_size + 1 
elements for each individual to store the hidden layer’s state and fitness score. The first hidden_size elements represent the 
state of hidden_size hidden units, that is, each element in the first hidden_size elements represents each hidden unit’s state, 
and the element’s value 1 means to keep this corresponding unit, element’s value 0 means to remove this corresponding unit 
(For example, 1, 1, 0, 0, 0, …, 0, 0, 0 means this individual only keep the first two hidden units and remove other hidden 
units). The first hidden_size elements are used for pruned the network later. The last element of each row is to store the fitness 
score of each individual, and the fitness score is the accuracy of the corresponding pruned network. 
 
The fitness function is to calculate the classification accuracy of each individual. The first step of the fitness function is to 
prune the network based on individual’s hidden layer’s state, after removed the 0 value hidden units and their weights, I 
initialized a new neural network which is same to the original network, but with the pruned weights and pruned hidden layer 
size, as the pruning trained neural network. The second step is to return the classification accuracy for this pruned network by 
calculating the accuracy on the test set dataset. 
 



For the whole evolutionary algorithm process, I initialize the population of candidate by randomly assigning a binary value 
which ranges from 1 to 2^(hidden_size) – 1 (i.e. at least keeps 1 hidden unit to 111…111, keeps all hidden units) to each 
individual, and store this hidden layer’s state into the individual_score_matrix. Uniform random initialization is used to ensure 
that the initial population is a uniform representation of the entire search space. Then I calculate the fitness score of each 
individual through the fitness function, and store the score into the individual_score_matrix as well. Two Parents are selected 
from the population through the Roulette Wheel Selection method. One-Point Crossover method is used to generate two 
children from the selected parents, and the Uniform Mutation method is to mutate each child thus adds diversity to the genetic 
characteristics of the population. Then the mutated child’s fitness score is calculated through the fitness function, and a 
Replace worst replacement strategy is used to optimize the population to a higher fitness score trend, where the children 
replaces the worst individual of the current population. Finally, the evolutionary process will stop after limited_generations 
generations are reached. 
 
 
2.4    Measure Results Method 
 
For the training results, I calculate the training accuracy by dividing the number of correctly classified instances by the number 
of total classified instances. Training set accuracy can be used to find if the training process has the high possibility of overfit, 
for example, the training set accuracy is always 100% may shows the network has already overfitted. I also calculate the 
confusion matrix, which can be thought as a table with two dimensions ‘actual’ and ‘predicted’, and has identical sets of 
‘classes’ in both dimensions. The confusion matrix allows a visualization of the performance of the classification. 
 
For the testing results, I test both the original size network and the pruned networks to compare the performance between 
them. I calculate the testing set accuracy, and the confusion matrix for both networks. Furthermore, I measure the consumed 
time of getting the classification outputs by testing the corresponding network. And I also measured the pruning rate by 
dividing the pruned network hidden layer’s size by the original hidden layer’s size. 
 
 
3 Result and Discussion 
 
 
3.1    Analyze and Evaluate the Testing Set Results by using the distinctiveness analyze method 
 

• Relationship between pruning rate and saved testing time  
 
To analyze and evaluate the relationship between pruning rate and saved testing time, I make a data chart by randomly testing 
15 times by using the distinctiveness analyze method, to get 15 sets of data results, and draw the results on the graph to have 
a visualization of the performance. The pruning rate is provided by the measure results method, and the saved time is 
calculated by subtracting pruned network testing consumed time from original network testing consumed time. Set original 
networks’ hidden layer size to 100.  

Figure 1.  Relationship between pruning rate and saved testing time 



This line chart (Figure 1) shows that, with the increment of the pruning rate, more testing time is saved by getting the outputs 
from the pruned neural network. This result proves the previous statement that Lawrence, Lee Giles and Chung Tsoi 
mentioned [4]: a smaller neural network could save more processing time. 
  

• Relationship between pruning rate and test set accuracies on original network and distinctiveness pruned network 
 
To analyze and evaluate the relationship between pruning rate and test accuracies of both original networks and distinctiveness 
pruned network, I make a data chart by randomly testing 15 times by using the distinctiveness analyze method, to get 15 sets 
of data results, and draw the results on the graph to have a visualization of the performance. The pruning rate and the test 
accuracies are provided by the measure results method. Set original networks’ hidden layer size to 100. 

Figure 2. Relationship between pruning rate and test accuracies on original network and distinctiveness pruned network 
 
 
In this line chart (Figure 2), we can find that, the distinctiveness pruned network test accuracy’s change is closely following 
the change of original network test accuracy. To get more information from this chart, we can compare the trend lines between 
the original network’s test accuracy and pruned network’s test accuracy. The two relative trend lines show the pruned network 
test accuracy is down slightly with the increment of the pruning rate. Because the two trend lines are not parallel, instead, the 
distance between two trend lines is increased with the increment of the pruning rate. 
 
 
3.2    Analyze and Evaluate the Testing Set Results by using the Evolutionary Algorithm Pruning Method 
 

• Relationship between pruning rate and test set accuracies on original and Evolutionary Algorithm pruned network 
 
To analyze and evaluate the relationship between pruning rate and test set accuracies of both original networks and 
Evolutionary Algorithm pruned network, I make a data chart by randomly testing 15 times by using the Evolutionary 
Algorithm method, to get 15 sets of data results, and draw the results on the graph to have a visualization of the performance. 
I use the best accuracy in the population to represent the accuracy of Evolutionary Algorithm pruned network. The pruning 
rate and the test accuracies are provided by the measure results method. Set original networks’ hidden layer size to 100. 



 
Figure 3. Relationship between pruning rate and test accuracies on original network and Evolutionary Algorithm pruned network 

 
 
In this line chart (Figure 3), we can find that, the Evolutionary Algorithm pruned network’s best test accuracy is similar to the 
original network test accuracy, and sometimes the pruned network’s accuracy even exceeds the original test set accuracy. For 
example, when the pruning rate reached 50%, the pruned network’s best test accuracy (76%) is higher than the original test 
set accuracy (70.67%), that is, I get a better performance after I reduced the neural network, which achieves the previous 
expect: the pruned network still guarantee a consistent quality. 
 
 
3.3    Compare the Results between the Two Pruning Methods 
 

• Compare the pruned networks’ accuracies with the original network’ accuracy 
 
To compare the results between the two pruning methods, one important feature is that, the pruned network’s accuracies in 
the Evolutionary Algorithm pruning method can exceed the original network’s accuracy (Figure 3), while the pruned 
network’s accuracies in the distinctiveness pruning method are always slightly below the original network’s accuracy (Figure 
2). The Evolutionary Algorithm method shows that there are some redundant hidden units in the original network, after 
removed these redundant hidden units, the pruned neural network can even get a better performance than the original size 
network’s performance. 
 

• Compare the pruning rate between two pruning methods 
 
By comparing the results from the two pruning methods, we can find that, the Evolutionary Algorithm pruning method can 
prune to a smaller neural network (with the average pruning rate of 45%) without impacting performance than the 
distinctiveness pruning method (with the average pruning rate of 31%). The Evolutionary Algorithm pruning method also got 
a higher pruning performance (pruning rate range from 34% to 52%) than the distinctiveness pruning method (pruning rate 
range from 24% to 38%). 
 

• Compare the pruned networks’ accuracy between two pruning methods 
 
Comparing the accuracy between two methods, the Evolutionary Algorithm pruning method’s accuracies can exceed the 
original network’s accuracies while the distinctiveness pruning method cannot exceed the original network’s accuracies. The 
Evolutionary Algorithm pruning method’s average accuracy (76.48%) is also higher than the distinctiveness pruning method’s 
average accuracy (70.02%). 
 
 
3.4    Compare and Evaluate the Results with Other Paper that Use Same Dataset 
 
Pedro Silva also used same dataset with mine for classifying the leaf species [5]. The classifiers that he used are the Linear 
Discriminant Analysis (LDA) and the K-Nearest Neighbors (KNN). In fact, LDA is the simplest parametric classification 
technique and KNN is the simplest non-parametric classification technique [5]. 
 
To comparing the results with Pedro Silva’s result [5] (Table 1.), I calculated my ‘Test Set Classification Error’ by get the 
average testing accuracy of both original network and pruned networks from the previous fifteen accuracy data (Figure 2 & 
Figure 3), and simply use one minus each average testing accuracy to get the ‘Test Set Classification Error’ for each network, 
at the final, the results of my networks’ performance are showed in Table 2. 
 
 
Table 1. Shape and texture features: Summary of classification results. 

Method Cross-validation Error Classification Error 
LDA 22.30% 15.70% 

KNN (1) 31.90% 28.10% 
KNN (3) 30.70% 32.60% 
KNN (5) 33.80% 27.00% 

 



Table 2. Classification Error of different networks 

Pruning Method Original Test Set Classification Error Pruned Test Set Classification Error 
Distinctiveness 23.90% 29.98% 

Evolutionary Algorithm 24.08% 23.52% 
 

 
To compare the performance between different methods, the classification errors of each method are evaluated. Comparing 
with the above two result tables, the parametric classification technique LDA (in Table 1.) has the best performance with the 
lowest classification error 15.7%, and then the second-best method is the evolutionary algorithm pruned neural network (in 
Table 2.) which has a 23.52% classification error. On the other hand, the method with the worst performance is KNN (3) (in 
Table 1.), which has a highest classification Error 32.60%. All the methods worked well with this Leaf dataset [2] with an 
average classification accuracy at least higher than 65%, and the best classification result was using linear discriminant 
analysis as classifier. 
 
 
4 Conclusion and Future Work 
 
 
I have constructed a feed-forward neural network to solve a classification problem, and used the distinctiveness of hidden 
units to find the units with similar functionality, and pruned the network by removing the redundant functionality units. With 
the pruned network weights being adjusted appropriately, the pruned network can still guarantee a consistent quality. The 
classification accuracy will slightly decrease alone with the increment of the pruning rate. I also used the evolutionary 
algorithm pruning method to reduce the same basic network, and got a high performance on both classification accuracy and 
pruning rate. In this method, I got a better average classification accuracy than the distinctiveness pruning method’s average 
classification accuracy. Both the pruning methods need no more further training. However, the distinctiveness pruning method 
still has limitation, while the evolutionary algorithm pruning method’s classification accuracy can exceed the original 
network’s classification accuracy but the distinctiveness pruning method’s classification accuracy is always less than the 
original network’s classification accuracy. 
 
The current distinctiveness pruning trained net still has limitation, for the next step, I will widen the current distinctiveness 
method, to analyze the similar functionality of groups of three or more units which together have no effect, or two or more 
units with a constant effect, to improve the performance of more complex pruning situations. 
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6   Appendix: Experimental Data for Result and Discussion Section 
 
 
Table 3. Experimental data for Figure 1 

No. pruning rate (%) saved time (ms) 



1 24% -0.04172325 
2 25% -0.01502037 
3 26% -0.06509792 
4 27% 0.02193451 
5 28% 0.02002717 
6 29% 0.01692772 
7 30% 0.07200241 
8 31% 0.03409386 
9 32% 0.01192093 
10 33% 0.02408027 
11 34% 0.09393692 
12 35% 0.04124641 
13 36% 0.03600121 
14 37% 0.04386902 
15 38% 0.01525879 

 
 
Table 4. Experimental data for Figure 2 

No. pruning rate(%) original network test accuracy (%) pruned network test accuracy (%) 
1 24% 78.46% 76.92% 
2 25% 75% 68.48% 
3 26% 84.13% 77.78% 
4 27% 77.78% 76.19% 
5 28% 71.21% 65.15% 
6 29% 76.25% 70.00% 
7 30% 77.61% 76.00% 
8 31% 77.46% 67.61% 
9 32% 66.67% 58.33% 
10 33% 81.54% 73.85% 
11 34% 76.06% 71.83% 
12 35% 76.36% 67.27% 
13 36% 68.66% 58.21% 
14 37% 76.06% 71.83% 
15 38% 78.18% 70.91% 
average value 31% 76.10% 70.02% 
classification error  23.90% 29.98% 

 
 
Table 5. Experimental data for Figure 3 

No. pruning rate(%) original network test accuracy (%) the best pruned network test accuracy (%) 
1 34% 70.51% 78.21% 
2 39% 80.00% 77.33% 
3 40% 80.33% 77% 
4 41% 69.74% 72.37% 
5 42% 83.64% 81.82% 
6 43% 74.60% 76.19% 
7 44% 74.24% 72.73% 
8 45% 73.44% 76.56% 
9 46% 72.97% 77.03% 
10 47% 64.63% 65.85% 
11 48% 81.82% 83.33% 
12 49% 84% 76.92% 
13 50% 70.67% 76% 
14 51% 81.43% 81.43% 
15 52% 77.03% 74.32% 
average value 45% 75.92% 76.48% 
classification error  24.08% 23.52% 

 


