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Abstract. When training a neural network (NN) [1], we prefer unencrypted data because we do not 

want data encoded by other previous users. In some situation, for a single attribute, there may be too 

many instances of one class and very few of others. Firstly, we implement a basic neural network 

and use it as the fitness function to apply Genetic Algorithm (GA) [2], and GA plays a role in 

selecting input features. Secondly, we apply input and output encoding technique to improve 

performance. Finally, the result of our neural network will be compared to that of others’ experiment.             

Introduction 

To train a neural network better, the representation of raw data matters. But what should be done in pre-

process and encode stage to improve the performance of the neural work on the data? Thus, the result of 

neural network with basically pre-processed data will be compared to that of neural network with 

encoded data using a particular method. The decisions we made will be based on the analysis of raw data 

and a classification problem will be solved based on chosen data set. After the neural network is trained, 

GA will help us to select features to find relatively best combination of input attributes. 

 The raw data is from mushroom records drawn from the Audubon society field guide to north 

America mushrooms [3]. This data set includes 23 species of gilled mushrooms in the Agaricus and 

Lepiota Family. Each species will only be edible or poisonous, that is, two classes totally. There are 8124 

instances in this data set and each instance has 22 attributes. Only in attribute “stalk-root” data missing 

exists. All data is nominal instead of numeric. This data set is appropriate to do classification considering 

its large number of instances and encrypted data. 

Neural Network 

Data Preparation 

To solve this classification problem, a neural network will be implemented. But before the 

implementation, all data will be pre-processed and encoded. The first column of this data set is target 

column which represents the class of a mushroom, and 22 attribute columns follow. Firstly, we move 

the first column to the last. This avoids mistaking the index of attributes and makes it easier to 



operate data. Secondly, in all 8124 instances, there are 2480 instances with missing data in column 

“stalk-root”. Given that all data is nominal, so it is hard to fill missing data through substitution 

methods. Here we do complete case analysis by using only rows with all the values and all instances 

with missing data will be dropped. Thirdly, because the input of a neural network should be numeric, 

we need to encode the data. Take the first attribute ‘cap-shape’ as an example, there are 5 

categories in it which are ‘bell=b’, ‘conical=c’, ‘convex=x’, ‘flat=f’, ‘knobbed=k’ and 

‘sunken=s’ respectively and they are all recorded as the right part of equal mark. Then, we 

encode these categories with 0, 1, 2, 3 and 4 in sequence and this makes inputs numeric. This 

encoding technique will be applied on all attributes. 

Implementation 

The neural network will be implemented in PyTorch. Firstly, we define several hyper parameters 

(number of inputs, number of classes, training epochs, and learning rate) for this neural network: 

input_neurons = n_features  #equals to 22 here 

hidden_neurons = 35 

output_neurons = 2 

learning_rate = 0.001 

num_epochs = 1000 

Then we define a customised neural network structure and apply a linear transformation from 

input layer to hidden layer and then to output layer. In forward function, we define a process of 

performing forward passing and get output data and predicted values after it is done: 

class TwoLayerNet(torch.nn.Module): 

      def __init__(self, n_input, n_hidden, n_output): 

          super(TwoLayerNet, self).__init__() 

             self.hidden = torch.nn.Linear(n_input, n_hidden) 

          self.out = torch.nn.Linear(n_hidden, n_output) 

 

      def forward(self, x): 

         h_input = self.hidden(x) 

          h_output = F.sigmoid(h_input) 

         y_pred = self.out(h_output) 

          return y_pred 

Genetic Algorithm 

Implementation 

Genetic Algorithm is implemented in PyTorch. We use the trained neural network as the fitness 

function, and the result of this function is the accuracy of the neural network. Our aim is to select 

the neural network with relatively largest accuracy and its feature combination. We will initialise a 



few identical chromosomes and each chromosome represents one combination of features. For 

example, chromosome [1,0,1,0,0,1] means only the first, third and sixth feature will be trained by 

neural network. Several hyper parameters are defined: 

DNA_SIZE = n_features    # number of bits in DNA 

POP_SIZE = 20             # population size 

      CROSS_RATE = 0.8          # DNA crossover probability 

MUTATION_RATE = 0.01    # mutation probability 

N_GENERATIONS = 40        # generation size 

Then we define non-zero fitness function, population select function, gene crossover function and 

mutation function. Population select function is based on fitness value, and population with higher 

fitness value has higher chance to be selected: 

def get_fitness(prediction): 

return prediction + 1e-3 - np.min(prediction) 

def select(pop, fitness): 

idx = np.random.choice(np.arange(POP_SIZE), size=POP_SIZE, 

replace=True, p=fitness/fitness.sum()) 

return pop[idx] 

def crossover(parent, pop): 

if np.random.rand() < CROSS_RATE: 

# randomly select another individual from population 

i = np.random.randint(0, POP_SIZE, size=1) 

# choose crossover points(bits) 

cross_points = np.random.randint(0, 2, 

size=DNA_SIZE).astype(np.bool) 

# produce one child 

parent[cross_points] = pop[i, cross_points] 

return parent 

def mutate(child): 

for point in range(DNA_SIZE): 

if np.random.rand() < MUTATION_RATE: 

child[point] = 1 if child[point] == 0 else 0 

return child 

Evaluation 

The data set will be divided into two parts: 80% of it will be used to do training and 20% is for testing. 

After all chromosomes are initialized, we build a neural network for each chromosome to do training and 

testing, and we will use the testing accuracy to do evaluation. Compared to training accuracy, testing 

accuracy is more suitable to represent a neural network’s ability to do classification when meets new 

dataset.  

 Under all hyper parameters set above, this neural is trained and tested with the pre-processed data. 

Table 1 shows the results of accuracy of five independent tests.  

Test Number Chromosome Accuracy 



Test 1 0010011100001001011110 88.44% 

Test 2 1100101000011001011110 89.82% 

Test 3 0001001110101110010110 87.97% 

Test 4 1000110001100001110100 90.80% 

Test 5 1000101001110010000111 90.43% 

Table 1 

The chromosome in the last generation will be taken as the most fitness DNA and its corresponding 

accuracy indicates the performance of our NN & GA technique. It can be calculated from Table 1 

that the average accuracy is 89.49%. 

Method 

To improve the of performance of NN & GA, an input and output encoding technique will be 

implemented [2]. Based on the analysis of raw data, encoding decisions will be made. 

Data Analysis (Examples) 

Figure 1 shows the frequency of “spore-print-color” and this feature has nine types: black = ’k’, brown 

= ‘n’, buff = ‘b’, chocolate = ‘h’, gray = ‘g’, green = ‘r’, orange = ‘o 

, pink = ‘p’, purple = ‘u’, red = ‘e’, white = ‘w’, yellow = ‘y’. The data is nominal value and there is no 

particular distribution, three types (‘k’, ‘n’ and ‘h’) are common and others are rare. Patterns with 

output 1 (encoding of ‘n’) similar to those with output 3 (encoding of ‘h’) may result in wrong output 2 

(encoding of ‘b’).  

 

Figure 1 

 It can be seen from Figure 2 that although feature veil-type should have had two types (partial = ‘p’ 

and universe = ‘u’), only ‘p’ exists among all instances. That is, this attribute is redundant. 

 



 

Figure 2 

 Attribute ‘population’ has six types: ‘a’ = abundant, ‘c’ = clustered, ‘n’ = numerous, ‘s’ = scattered, 

‘v’ = several and ‘n’ = solitary. Although it is nominal, we can still say “abundant” > “clustered” > 

“numerous” > “scattered” > “several” > “solitary” according to the actual meanings of these words. 

Figure 3 shows the frequency of attribute population 

    

 

Figure 3 

For attribute cap-shape, the distribution of it is similar with that of spore-print-color. There are two 

common types which are convex = ’x’ and flat = ’f’ respectively. Other types are rare. 

 



 

Figure 4 

Encoding Decisions 

For attribute spore-print-color, consider that four types are common and others are rare, a single 

continuously value input is not appropriate. We represent this attribute with four inputs. Therefore, these 

three common types will be distinguished from others. The input vector these inputs would be sparse and 

information may be lost in some degree. Table 2 indicates each type with five inputs, and all unmarked 

activations are 0.1. 

 

VALUE G1 G2 G3 G4 

k  0.9   

n   0.9  

u 0.9    

h    0.9 

w 0.9    

r 0.9    

o 0.9    

y 0.9    

b 0.9    

Table 2 

For attribute veil-type, because it only has one value ‘p’ among all instances, it contributes nothing 

when we train or test the neural network with data set having this attribute. Therefore, we decide to drop 

this column. 

 For attribute population, we encode all types of it as Table 3 shows. If we want to measure the 

weight of ‘abundant’ and that of ‘solitary’, ‘abundant’ should have larger numeric value than that of 

‘solitary’. Because ‘abundant’ means more than ‘solitary’ considering meanings of these two words. To 

avoid ‘not exist’ situation (‘solitary’ > ‘not exist’), we encode attribute population from 1 to 6 instead of 



starting from 0. 

 

VALUE ENCODING 

solitary 1 

several 2 

scattered 3 

numerous 4 

clustered 5 

abundant 6 

Table 3 

 For attribute cap-shape, we use the same encoding method of spore-print-color to process it. Table 

4 shows the encoding in detail and all unmarked activation are 0.1. 

 

VALUE G1 G2 G3 

b 0.9   

c 0.9   

x  0.9  

f   0.9 

k 0.9   

s 0.9   

Table 4 

Here is example code of encoding attribute ‘cap-shape’: 

data.insert(1,'01',dataf[0]) 

data.insert(2,'02',dataf[0]) 

data[0].replace(['b','c','x','f','k','s'],[0.9,0.9,0.1,0.1,0.9,0.

9],inplace=True) 

data[1].replace(['b','c','x','f','k','s'],[0.1,0.1,0.9,0.1,0.1,0.

1],inplace=True) 

data[2].replace(['b','c','x','f','k','s'],[0.1,0.1,0.1,0.9,0.1,0.

1],inplace=True) 

Output Encoding 

It is difficult for the neural network to do classification since the output vectors are sparse. We introduce 

equilateral encoding [4] to encode outputs. Equilateral encoding represents n possibilities with n-1 units, 

which is 1 less than 1-of-n encoding. Each set of units should have an equal Euclidean distance from the 

others. This requirement can guarantee that all wrong choosing will have the same error weight. For 

example, if choosing class 3 is correct, then choosing class 2 and choosing class 4 will have the same 

error weight. Table 4 is generated by equilateral encoding based on our data set. As the Table 5 indicates, 

2 possibilities are represented by 1 unit (1 less unit than 1-of-n encoding). Because there are only two 

classes, the Euclidean distance must be the same.  



 

Category Unit 1 

Edible 0 

Poisonous 1 

Table 5 

 Calculating Euclidean distance between the output vector and above values, and optimise the 

category which has the minimum distance with output vector: 

 

                        Output category = MIN (distance (Ui))      (1) 

Where 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑈𝑖) = √∑ (𝑦𝑗 − 𝑢𝑗𝑖)
1
𝑗=1

2
 

Where 𝑈𝑖 = (𝑢𝑗𝑒 , 𝑢𝑗𝑝) 

Results and Discussion 

After the technique is implemented, the number of columns of the encoded data set becomes 26 from 22. 

We still use 80% of the data set to do training and use rest of it to do testing. Table 6 shows the result of 

testing, and these five tests are independent. 

 

Test Number Chromosome Accuracy 

Test 1 01101100011000101001110100 66.24% 

Test 2 10101110000011101111110111 69.61% 

Test 3 01111111101100101001010011 67.94% 

Test 4 00111100000110011110010100 71.00% 

Test 5 01111011010000101101101001 65.92% 

Figure 6 

 We can observe from the result that this technique does not help a lot to our NN & GA and even 

results in worse classify ability of recognizing poisonous mushrooms. The reason of this is likely to be 

output having only two classes, thus equilateral encoding does not perform well or even has negative 

effects. Another reason may be that because there are 26 input attributes, it is impossible to explore all 

226 chromosomes. Therefore, initialising population plays significant role in selecting features. If the 

selected features in initialising step do not contribute a lot, the result after several generations may not 

be satisfactory enough.  

There is another experiment conducted in 1997 [5], which used this mushroom data set as well. The 

method is to simplify the neural network to guarantee clear logical functions performed by the network. 

It transfers multi-layered perceptron (MLP) to a logical network smoothly and use structural learning 

with forgetting (SLF) approach to obtain a single rule: 

edible if odor = (almond \/ anise \/ none) /\ spore-print-color = ¬green  

 Only two attributes and four antecedents are used. This rule results in 48 errors and 99.41% accuracy, 

which is much more ideal than our NN & GA technique. The rules obtained by the algorithm is ordered, 



starting from most often used rules to rules that handle only a few cases. In this way, it is easier and faster 

to find the optimized rule. 

Conclusion and Future Work 

We have implemented input and output encoding technique to try to improve our neural network, but it 

still did not perform well. Consider that all input data are nominal, more effort needs to make to find the 

best encoding methods of data suitably for the network. Missing data needs to fill appropriately instead 

of being dropped directly, because dropping may lead to the change of distribution of some attributions. 

Furthermore, increasing the generation size of GA may let chromosomes have more possibility to mutate 

and become more appropriate for neural network, but it will be time consuming relatively. Additionally, 

pattern reduction techniques can be applied to avoid losing too much information. 
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