
Progressive Distinctiveness Based Reduction for Multilayer Neural Network
with Unbalanced Data

Jiamou Sun

 Research School of Computer Science, Australian National University,

2601 Canberra, Australia
{u5871153}@anu.edu.au

Abstract. The neural network is an influential classification and regression tool as it does not require the apparent
rules from data. One of the defects of the neural network is that the performance is limited by the calculation
complexity. The objective of this paper is to apply a progressive distinctiveness based pruning method to reduce the
neurons of multi-layer neural networks. Some unbalanced data is chosen and normalized for the real dataset can be
unstructured and noisy. The non-normalized dataset and non-progressive pruning method are used as the baselines.
From the results, the normalization techniques and the progressive method can hugely improve the function and
stability of the network. Before some certain pruning thresholds, the accuracy of pruning network keeps stable while
exceeding the thresholds can cause significant reduction of the accuracy.

Keywords: multi-layer network pruning, neural network, distinctiveness based pruning, data normalization

1 Introduction

Traditional ruled based classification method can be hard for application because, in some situation, it is impossible to
figure out the rules from the noisy dataset. Compared with it, the neural network has a significant advantage for it can
classify data only with the label, and it has good generalization to different kinds of data. It has been used to solve many
problems, including solar irradiance prediction and firm rating [1], [2]. However, neural network is criticized for its
computation complexity. Although multi-layer network has excellent function potential, it may require long time and
more data to train, which is unaffordable for the application under some situation [3], [4]. Fortunately, lots of pruning
techniques for reducing the size of the network have been found out, and the distinctiveness based method is one of
them. It was made by paper [5], showing good performance for a simple 3-layer network. This method was also applied
in many projects to successfully improve the function of the networks [6], [7], [8].

In my previous work, some characters, including the usefulness, of the distinctiveness based pruning have been
proved for the single-hidden-layer network [16]. However, many people prefer to use multilayer networks for its good
potential to solve problems. Therefore, in this paper, a progressive distinctiveness pruning based method is made for the
more complex networks. The multi-hidden-layer pruning is different from the single-hidden-layer network, which can
cause accuracy reduction for standard pruning method. During the process of experiment, some of the characters of this
kind of technique are revealed. An unbalanced dataset is chosen and normalized because, in the real problem, we cannot
approve the cleanliness of data. The non-progressive method and non-normalized data are applied as the baseline in the
experiment, and the cross-validation is used to test the accuracy.

The comparison of different pruning techniques and the method of this paper is in section 2, the experiments and the
results are in section 3, and the conclusion and discussion are in section 4.

2 Method

2.1 Related Works

Pruning is a popular topic, and many methods have been researched to reduce the size of the neural network. The
sensitivity, badness and distinctiveness are three of essential pruning methods.

The sensitivity method applies the sensitivity value, which is related to the derivative of error and changes of
weights, to remove the nodes. The specific method is described in the paper [9]. The sensitivity of a network node is
defined as follow:

 (1)

!"#$ = & ∆(#$)
*

+,-

.

(#$
/

0((#$
/ − (#$#)

The N is number of epochs, the ∆wij (n) is the derivative of error, the wi
ij is the initial weight, and the wf

ij is the final
weight. By calculation of the sensitivity of the network after training, the weight with least sensitivity value will be
removed. The advantage of this technique is that it has little computational overhead as it is a cumulative calculation
process [5]. Nevertheless, it has defects. The measurement only considers the independent weights but ignores the effect
of multiple weights [10]. If two weights are contradictive to each other, but each of them has high sensitivity, this
method will lose efficacy.

The badness method is similar to the sensitivity, but it focuses on pruning the neurons rather than weights. It is first
mentioned in the paper [11], and the formula is presented below:

(2)

The p is pattern, and the w is weight of the jth unit in layer n that is linked to layer n+1 with k units. After the training,

the unit with largest badness units will be eliminated. The badness method is simple and can accelerate the speed of
convergence of the network [12]. However, as discussed above, this method also only considers the effects of single
units rather than the co-effects. Besides, according to paper [5], this method lacks the theoretical support of its
rationality, because if the badness value is high, then the adjustment of weights will also be great, which is a good
appearance. Thus, this measurement may not get network to the best situation.

This paper applies the distinctiveness to reduce the size of network. It is first mentioned in paper [5]. The
distinctiveness will first calculate the angle between activation outputs of every hidden layer units in pattern space.
Then, if some of the angle are too similar or too different, the related units are considered redundant or contradictive, so
the unsuitable units will be eliminated. In our previous work, the distinctiveness method is proved effective in single
hidden layer network within small thresholds [16]. In this paper, the effect of it will be tested in multi-hidden-layer
network, and the method will be adjusted to fit the changes of network construction.

2.2 Method Architecture

Fig.1 shows the architecture of the method of this paper. This paper chooses the payment data of Taiwanese customers
to predict whether they will pay in the next month. It is first used in paper [13], which will also be applied as baseline in
the experiment section. First, the noisy data will be adjusted and normalized by some techniques. Then, a feed-forward
neural network with 2 hidden layers is established and used to predict the outcome. The weights are updated by batches
rather than the patterns for this method can prevent the network from overfitting. After the training, the angles of second
hidden layer’s neuron output activation vectors over the pattern presentation are calculated, and the neurons with similar
or contradictive function is pruned from the network. Because the second hidden layer’s output depends on outputs of
previous hidden layers, the multilayer network is more sensitive than the single hidden layer network. Hence, the
network is fine-tuned with another 200 epochs before the pruning operation of the first hidden layer. The order of
pruning layers is very essential, in this paper, the second hidden layer will be pruned first.

Fig. 1. The mainstream of the progressive pruning

!"#$% =' '($,*%,%+,×.*%+,
�

*

0�

1

There are 23 attributes in the dataset so the number of input neurons is 23. The first hidden layer contains 92 neurons
and second hidden layer contains 23 neurons. It is 2 classification problem so the output layer contains 2 neurons. The
sigmoid function is applied as the activation function for the hidden layer, and the softmax function is applied in the
output layer. I make use of decay-learning rate strategy because this can avoid excessive learning rate and fluctuation
when the network begins to converge. The initial learning rate is 0.3, and it will halve every 400 epochs. The total
training epochs before pruning operation is 1000. The threshold of pruning angle is set to 15 degrees. The specific
details of the performance evaluation are in the section 3.

2.3 Data Preparation

Default of Credit Card Clients Dataset, which is found in UCI repository is used as the test set [14]. It wants to apply 23
attributes to predict whether customers will make the payment next month or not. The attributes and their scopes are
listed in the table below:

Table 1. Attributes of the dataset

Attributes Min Max Scope

Amount of the given credit 10000 1000000 0+1

Gender 1 2 1-2

Education 1 4 1-4

Marital status 1 3 1-3

Age 21 79 0+
History of past payment

(from April to September) -2 8 -2-8

Amount of bill statement
(from April to September) 0 1664089 0+

Amount of previous payment
(from April to September) 0 1684259 0+

Default Payment 0 1 0-1

It is evident that this data is very unbalanced. By statistics, there are totally 30000 patterns. Among them, the amount

of class 0 is 23362, while the number of class 1 is 6638. This kind of data distribution can cause network learning too
many features about 0 class, so the risk of misjudgment is high. Another problem of dataset is that most of its figures do
not have boundaries. Some of the numbers are too high, while some numbers including education, age are only between
0 to 4. This considerable difference can cause longer time for training the network, and the effect of outliers will be
more prominent.

To solve those problems, first the oversampling technique is applied. The ratio of two classes is nearly 3:1, so the
data of class 1 is duplicated two more times to make the ratio of data balanced. For the problem of figure scopes, the
min-max normalization technique is applied to the attributes whose scope exceeds 4. The formula for it is shown below:

(3)

By using this method, those big figures are mapped to the scope of 0 to 1, so the data becomes more structured. The

effect of data preparation is tested in section 3.1.

2.4 Progressive Pruning Method

To analyze the effect of pruning, the formula of output of hidden neurons is shown below:

1 There is no upper bound.

!∗ = ! − %&'
max	 − %&'

!"# = % &'()(+ +(
,

-

(4)

As what paper [5] illustrates, the distinctiveness method adopts a pruning recovering method to decrease the effect of

pruning. The recovery technique is that every time the neuron is eliminated their weights will be added to the remaining
neuron. From the formula above, if the eliminated neuron’s weight and output are w1 and x1, and the left neuron’s
weight and output are w0 and x0, then their effect to the next layer’s neurons is presented below:

(5)

Hence, if two neurons’ functions are the same, which means their output figures are the same, the pruning process

will not affect the input of next layer’s neurons. However, the neurons with similar outputs are no equal to the two
outputs are same. Besides, the neurons with contradictive function are also considered to be pruned. Thus, this
recovering method is not perfect, so the distinctiveness pruning method can also cause the change of accuracy to the
network. By the experiments of paper [5] and [15], this kind of flaws will not affect the simple hidden layer network
hugely. Nevertheless, for the network with two or more hidden layers, the effect is very dramatic. Each hidden layer’s
input depends on the previous hidden layer’s output, which causes the network fragile for the loss of units. If all hidden
layers’ neurons are pruned together, the accuracy will decrease a lot. Moreover, the order of pruning is also essential,
different pruning order of hidden layers can lead to different results, so the performance of different kinds of pruning
methods are compared in the experiment section.

To overcome this defect, a progressive strategy is used. The network is pruned layer by layer. After one-layer
pruning, the network will be training for another 200 epochs. This can make network recover itself after the elimination,
so the pruning for next time will not affect the accuracy too much.

3 Results and Discussion

3.1 Total Accuracy

Through the 5-fold cross-validation, the final accuracy of the network without pruning is 74.46%. Compared with paper
[13], whose accuracies were between 74% to 84%, this result is a little bit lower. Note that original paper applied many
kinds of classification methods so it had lots of accuracies. However, there was no data normalization techniques in the
original paper, and the writer admitted that the data was very unbalanced, so it was not suitable to use error rate as the
measurement. Instead, the writer applied a measurement named Area Ratio to measure the effect of different kinds of
classification techniques, which are hard to compare with the result of this paper.

3.2 Data Normalization Assessment

To test the effect of data normalization step, the training result with non-normalized data is used as baseline. The
outcome is shown below:

Epoch

Ac
cu
ra
cy

%

77.82% 77.82% 77.82% 77.82% 77.82%

64.08%

72.70%
73.12% 74.30% 74.37%

Epoch

Ac
cu
ra
cy

%

 (a) Accuracy of normalized data (b) Accuracy of non-normalized data

Fig. 2. Accuracy of normalized and non-normalized data training

!"# = % &'()(+ '+ +',)+ + -(
.

/

Epoch

Lo
ss

0.6317

0.5945
0.5866

0.5809 0.5785

Epoch

Lo
ss

0.5237 0.5214 0.5206 0.5200 0.5199

 (a) Loss of normalized data (b) Loss of non-normalized data

Fig.3. Loss of normalized and non-normalized data training

As figures show above, network with normalized data can normally work, while the network with non-normalized data
totally loses the function, so normalized method in this paper works well for this kind of data. The Fig.2 (b) presents
that the accuracy with training sets, which is as high as 77.82%, does not change along with training steps. This happens
because the ratio of the negative class and positive class in original data is nearly 3:1, which can lead network only to
learn the negative class’s features. Thus, the network failed to recognize different patterns. This can be found by
looking at Fig. 2 and Fig.3. If the outcome is always 0, by calculation, the result will always be 77.82%, which is the
same to the experiment result in Fig.2. Fig.3 (b), which shows the loss of two kinds of training results with unbalanced
data, drops sharply at the beginning, and then hardly changes. Because the outcome is always 0, the loss of network
drops rapidly at the beginning. However, for most of the data has the features of class 0, it is difficult for network to
learning the right features of another class. As the results, the loss decreases slowly with further training, which
indicates that the training is utterly useless under the unbalanced data.

To further observe the effect of unbalanced data, the confusion matrix is applied, and the results are presented
below:

Table 2. Confusion matrix of two kinds of results

 (a) The result of normalized data (b) The result of non-normalized data

Those two tables further support the observation above. The Table 2(b) illustrates that the output of network is always
0, so without data normalization, the network cannot work normally. Table 2(a) shows the result of the training after the
data preparation. From it, it is obvious that the training effect has been improved a lot. With oversampling, the data is
more balanced so the network can start to learn the features of another class. With the min-max normalization, all the
larger data are limited between 0 to 1. Because the outputs of sigmoid activation function have bigger difference in the
domain between 0 to 1 than the domain with larger numbers, the normalization can make the features of inputs more
prominent, so it is easier for network to learn. Besides, if some inputs are too big, the fixing learning rate may be too
bigger for the nodes with big inputs than the nodes with small inputs in the back-propagation steps, so the converging
will be slow. The min-max normalization makes all the inputs in the similar in similar domain, so the fixing learning
rate can have similar effect to each weight in each node, and the network will converge quickly. Therefore, overall, the
data normalization methods in this paper is helpful to deal with the unbalanced data.

3.3 Pruning Assessment

3.3.1 Accuracy assessment. To test the effect of the progressive pruning method in the paper, different methods are
applied to the 5-fold cross-validation, and their results are compared. The comparison is illustrated below:

 Condition
Positive

Condition
Negative

Test
Positive 1146 422

Test
Negative 1491 4268

 Condition
Positive

Condition
Negative

Test
Positive 0 0

Test
Negative 1313 4687

74.63% 74.48% 74.49%
74.25% 73.55%

35.12%

50.98%

36.40% 35.98%

71.00%

50.10%

36.02%

70.79%

63.53%

73.77% 72.49% 74.15%
74.55%

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

1 2 3 4 5

Ac
cu
ra
cy

n-th validation

non-pruning non-progressive	pruning

progressive	pruning	(first	layer	first) progressive	pruning	(second	layer	first)

Fig. 4. Comparison of different pruning methods

As it presents, the accuracy of network without pruning, which is shown in green line, is high and stable in this figure.
Compare with it, the progressive pruning cutting second hidden layer first, which is shown in yellow, also performs
good and stable. However, the network with cutting first hidden layer first pruning and the network without progressive
pruning method have poor performance. Their accuracy in average is lower than the other two methods, and they are
very unstable for the number of accuracy fluctuate up and down. For the non-progressive pruning method, the effect is
bad because the multi-hidden-layer network can be more sensitive to the pruning than the single-hidden-layer network.
For the network with multi-hidden layer, the higher level hidden layers have the high concentration characters from the
features of bottom hidden layers. Although in ideal state, which means the activation output of pruning nodes are all
same of contradictive to each other, the outcome will not be affected. Nevertheless, the threshold is 15 degrees, so the
pruning method can always make some changes to the accuracy. If nodes of those higher layers are eliminated, then the
highly extracted features can be lost, causing huge decreasing of accuracy of the network. This is also the reason why
the pruning method cutting the first hidden layer first cannot perform well comparing to its counterparts. Although there
is progressive recovering, only the first hidden layer can get benefits from it. Hence, the progressive pruning method
with second hidden layer cutting first can keep the accuracy of the original network.

3.3.2 Stability Assessment. To test the stability of neural network under different thresholds, several 5-fold cross-
validation tests are applied, and the average results are shown in the table below:

Table 3. Confusion matrix of two kind of results

Minimum Angle Accuracy
 (non-pruning)

Accuracy
(pruning)

5 74.18% 74.42 %

15 74.46% 74.02 %

25 74.63% 70.75 %

35 74.31% 65.41 %

45 74.03% 59.57 %

55 74.40% 54.20 %

65 74.25% 62.38 %

75 73.48% 57.81 %

Table 3 presents that with the increase of the threshold, the pruning accuracy decreases, which is similar to what has
been gotten in my previous work [16]. There are some figures that do not conform the decrement law, one reason is that
the weights of pruning network are different for each test, which means the training of network is a stochastic process,
so the accuracy can be high after pruning; another reason is that the network is trained for a two-element classification

problem, so if the outputs are all 0 or 1, the accuracy can still be 50%, but this does not mean the effect of network is
good. To further test the performance of the network, the f1-score measurement is applied, the formula is shown below:

 (6)

 (7)

 (8)

The precision is the ratio of the true positive samples to the all positive samples, and the recall is the ratio of the true
positive samples to all the true samples. It can be used to measure the quality of the network. If all the outputs are 0,
then the accuracy will not drop below 50%, but the f1-score will be 0. The result is listed below:

Table 4. Confusion matrix of two kind of results

Minimum Angle F1-Score

5 0.567

15 0.561

25 0.554

35 0.529

45 0

55 0

65 0.007

75 0

Combining Table 4 with Table 3, the network still works well before the threshold of 25, but with decreasing of
thresholds, it will have a very poor performance. This pattern is similar to the single hidden-layer network, and it proves
that the progressive method in this paper will not affect the performance of the network greatly before the certain
thresholds.

3.4 Overfitting Assessment

For checking whether the network is overfitting or not, the final result of the network with test sets is compared with the
results with training set. Under the threshold of 15 degree, the accuracy for training set is 74.37%, and the accuracy for
test set is 73.89%. There are only 0.48% percent differences. Thus, the network in this paper is not overfitting.

4 Conclusion and Future Work

This paper focuses on pruning of multi-hidden-layer networks with unbalanced data. The oversampling and min-max
normalization techniques are applied to reduce the effect of unbalanced data and are proved to be useful by the
experiments. After the error becoming stable, the second hidden layer of neural network will be cut first, then a
progressive training with 200 epochs will be applied to recover the influence of the pruning step. Finally, the first
hidden layer is pruned and there is no further training required. Through experiments, the progressive pruning method
has great effect compared to non-progressive pruning techniques. With small angle threshold, the pruning will not affect
the function of network greatly, so this method is also useful in the multi-layer network and can observably reduce the
size of units.

Nevertheless, there are still many works to do. First, the final outcome compared to the paper [13] is still not ideal,
which means there is still space for the data normalization. Second, this method only considered the similarity and
contradiction between pairs of neurons. However, the bunch of units can also have same of contrary functions, creating
redundancy to the network. Thus, in the future work, more data normalization techniques can be tested to different
kinds of noisy data to find the better solutions to clean the data, and the function of bunch of neurons can also be
researched to improve the performance of the network pruning.

!"#$%% = '(
'(+ *+

!"#$%&%'(= *!
*! + ,!

!1 = 2×&'()**×+,'(-.-/0
&'()** + +,'(-.-/0

References

1.Mellit, A., Pavan, A.: A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of

a grid-connected PV plant at Trieste, Italy. Solar Energy. 84, 807-821 (2010).

2.Albino, V., Garavelli, A.: A neural network application to subcontractor rating in construction firms. International Journal of

Project Management. 16, 9-14 (1998).

3.Huang, G., Zhu, Q., Siew, C.: Extreme learning machine: a new learning scheme of feedforward neural networks. 2004 IEEE

International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541). (2004).

4.Heermann, P., Khazenie, N.: Classification of multispectral remote sensing data using a back-propagation neural network. IEEE

Transactions on Geoscience and Remote Sensing. 30, 81-88 (1992).

5.Gedeon, T., Harris, D.: Progressive image compression. [Proceedings 1992] IJCNN International Joint Conference on Neural

Networks. (1992).

6.Lewis, J.: Probing the critic: approaches to connectionist pattern synthesis. IJCNN-91-Seattle International Joint Conference on

Neural Networks. (1991).

7.Namphol, A., Arozullah, M., Chin, S.: Higher order data compression with neural networks. IJCNN-91-Seattle International Joint

Conference on Neural Networks. (1991).

8.Cottrell, G., Munro, P., Zipser, D.: Learning internal representations of gray scale images. (1987).

9.Karnin, E.: A simple procedure for pruning back-propagation trained neural networks. IEEE Transactions on Neural Networks. 1,

239-242 (1990).

10.Reed, R.: Pruning algorithms-a survey. IEEE Transactions on Neural Networks. 4, 740-747 (1993).

11.Hagiwara, M.: Novel backpropagation algorithm for reduction of hidden units and acceleration of convergence using artificial

selection. 1990 IJCNN International Joint Conference on Neural Networks. (1990).

12.Jearanaitanakij, K., Pinngern, O.: An Information Gain Technique for Acceleration of Convergence of Artificial Neural Networks.

2005 5th International Conference on Information Communications & Signal Processing. (2005).

13.Yeh, I., Lien, C.: The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card

clients. Expert Systems with Applications. 36, 2473-2480 (2009).

14.Dua, D., Karra Taniskidou, E.: UCI Machine Learning Repository, http://archive.ics.uci.edu/ml.

15.Gedeon, T.: Indicators of hidden neuron functionality: the weight matrix versus neuron behaviour. Proceedings 1995 Second New

Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems. (1995).

16.Sun, J.: Application of Network Reduction in Handwritten Letter Recognition Problem. ABCs2018. (2018).

