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Abstract. The neural network is an influential classification and regression tool as it does not require the apparent 
rules from data. One of the defects of the neural network is that the performance is limited by the calculation 
complexity. The objective of this paper is to apply a progressive distinctiveness based pruning method to reduce the 
neurons of multi-layer neural networks. Some unbalanced data is chosen and normalized for the real dataset can be 
unstructured and noisy. The non-normalized dataset and non-progressive pruning method are used as the baselines. 
From the results, the normalization techniques and the progressive method can hugely improve the function and 
stability of the network. Before some certain pruning thresholds, the accuracy of pruning network keeps stable while 
exceeding the thresholds can cause significant reduction of the accuracy. 
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1   Introduction 

Traditional ruled based classification method can be hard for application because, in some situation, it is impossible to 
figure out the rules from the noisy dataset. Compared with it, the neural network has a significant advantage for it can 
classify data only with the label, and it has good generalization to different kinds of data. It has been used to solve many 
problems, including solar irradiance prediction and firm rating [1], [2]. However, neural network is criticized for its 
computation complexity. Although multi-layer network has excellent function potential, it may require long time and 
more data to train, which is unaffordable for the application under some situation [3], [4]. Fortunately, lots of pruning 
techniques for reducing the size of the network have been found out, and the distinctiveness based method is one of 
them. It was made by paper [5], showing good performance for a simple 3-layer network. This method was also applied 
in many projects to successfully improve the function of the networks [6], [7], [8].  

In my previous work, some characters, including the usefulness, of the distinctiveness based pruning have been 
proved for the single-hidden-layer network [16]. However, many people prefer to use multilayer networks for its good 
potential to solve problems. Therefore, in this paper, a progressive distinctiveness pruning based method is made for the 
more complex networks. The multi-hidden-layer pruning is different from the single-hidden-layer network, which can 
cause accuracy reduction for standard pruning method. During the process of experiment, some of the characters of this 
kind of technique are revealed. An unbalanced dataset is chosen and normalized because, in the real problem, we cannot 
approve the cleanliness of data. The non-progressive method and non-normalized data are applied as the baseline in the 
experiment, and the cross-validation is used to test the accuracy. 

The comparison of different pruning techniques and the method of this paper is in section 2, the experiments and the 
results are in section 3, and the conclusion and discussion are in section 4. 

2   Method 

2.1   Related Works 

Pruning is a popular topic, and many methods have been researched to reduce the size of the neural network. The 
sensitivity, badness and distinctiveness are three of essential pruning methods. 

The sensitivity method applies the sensitivity value, which is related to the derivative of error and changes of 
weights, to remove the nodes. The specific method is described in the paper [9]. The sensitivity of a network node is 
defined as follow: 
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The N is number of epochs, the ∆wij (n) is the derivative of error, the wi
ij is the initial weight, and the wf

ij is the final 
weight. By calculation of the sensitivity of the network after training, the weight with least sensitivity value will be 
removed. The advantage of this technique is that it has little computational overhead as it is a cumulative calculation 
process [5]. Nevertheless, it has defects. The measurement only considers the independent weights but ignores the effect 
of multiple weights [10]. If two weights are contradictive to each other, but each of them has high sensitivity, this 
method will lose efficacy. 

The badness method is similar to the sensitivity, but it focuses on pruning the neurons rather than weights. It is first 
mentioned in the paper [11], and the formula is presented below: 
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The p is pattern, and the w is weight of the jth unit in layer n that is linked to layer n+1 with k units. After the training, 

the unit with largest badness units will be eliminated. The badness method is simple and can accelerate the speed of 
convergence of the network [12]. However, as discussed above, this method also only considers the effects of single 
units rather than the co-effects. Besides, according to paper [5], this method lacks the theoretical support of its 
rationality, because if the badness value is high, then the adjustment of weights will also be great, which is a good 
appearance. Thus, this measurement may not get network to the best situation. 

This paper applies the distinctiveness to reduce the size of network. It is first mentioned in paper [5]. The 
distinctiveness will first calculate the angle between activation outputs of every hidden layer units in pattern space. 
Then, if some of the angle are too similar or too different, the related units are considered redundant or contradictive, so 
the unsuitable units will be eliminated. In our previous work, the distinctiveness method is proved effective in single 
hidden layer network within small thresholds [16]. In this paper, the effect of it will be tested in multi-hidden-layer 
network, and the method will be adjusted to fit the changes of network construction. 

2.2   Method Architecture  

Fig.1 shows the architecture of the method of this paper. This paper chooses the payment data of Taiwanese customers 
to predict whether they will pay in the next month. It is first used in paper [13], which will also be applied as baseline in 
the experiment section. First, the noisy data will be adjusted and normalized by some techniques. Then, a feed-forward 
neural network with 2 hidden layers is established and used to predict the outcome. The weights are updated by batches 
rather than the patterns for this method can prevent the network from overfitting. After the training, the angles of second 
hidden layer’s neuron output activation vectors over the pattern presentation are calculated, and the neurons with similar 
or contradictive function is pruned from the network. Because the second hidden layer’s output depends on outputs of 
previous hidden layers, the multilayer network is more sensitive than the single hidden layer network. Hence, the 
network is fine-tuned with another 200 epochs before the pruning operation of the first hidden layer. The order of 
pruning layers is very essential, in this paper, the second hidden layer will be pruned first. 

 
Fig. 1. The mainstream of the progressive pruning 
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There are 23 attributes in the dataset so the number of input neurons is 23. The first hidden layer contains 92 neurons 
and second hidden layer contains 23 neurons. It is 2 classification problem so the output layer contains 2 neurons. The 
sigmoid function is applied as the activation function for the hidden layer, and the softmax function is applied in the 
output layer. I make use of decay-learning rate strategy because this can avoid excessive learning rate and fluctuation 
when the network begins to converge. The initial learning rate is 0.3, and it will halve every 400 epochs. The total 
training epochs before pruning operation is 1000. The threshold of pruning angle is set to 15 degrees. The specific 
details of the performance evaluation are in the section 3. 

2.3   Data Preparation 

Default of Credit Card Clients Dataset, which is found in UCI repository is used as the test set [14]. It wants to apply 23 
attributes to predict whether customers will make the payment next month or not. The attributes and their scopes are 
listed in the table below: 

 

Table 1. Attributes of the dataset 

Attributes Min Max Scope 

Amount of the given credit 10000 1000000 0+1 

Gender 1 2 1-2 

Education 1 4 1-4 

Marital status 1 3 1-3 

Age 21 79 0+ 
History of past payment 

(from April to September) -2 8 -2-8 

Amount of bill statement 
(from April to September) 0 1664089 0+ 

Amount of previous payment 
(from April to September) 0 1684259 0+ 

Default Payment 0 1 0-1 
 
 
It is evident that this data is very unbalanced. By statistics, there are totally 30000 patterns. Among them, the amount 

of class 0 is 23362, while the number of class 1 is 6638. This kind of data distribution can cause network learning too 
many features about 0 class, so the risk of misjudgment is high. Another problem of dataset is that most of its figures do 
not have boundaries. Some of the numbers are too high, while some numbers including education, age are only between 
0 to 4. This considerable difference can cause longer time for training the network, and the effect of outliers will be 
more prominent.  

To solve those problems, first the oversampling technique is applied. The ratio of two classes is nearly 3:1, so the 
data of class 1 is duplicated two more times to make the ratio of data balanced. For the problem of figure scopes, the 
min-max normalization technique is applied to the attributes whose scope exceeds 4. The formula for it is shown below: 
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By using this method, those big figures are mapped to the scope of 0 to 1, so the data becomes more structured. The 

effect of data preparation is tested in section 3.1. 

2.4   Progressive Pruning Method 

To analyze the effect of pruning, the formula of output of hidden neurons is shown below: 
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As what paper [5] illustrates, the distinctiveness method adopts a pruning recovering method to decrease the effect of 

pruning. The recovery technique is that every time the neuron is eliminated their weights will be added to the remaining 
neuron. From the formula above, if the eliminated neuron’s weight and output are w1 and x1, and the left neuron’s 
weight and output are w0 and x0, then their effect to the next layer’s neurons is presented below: 
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Hence, if two neurons’ functions are the same, which means their output figures are the same, the pruning process 

will not affect the input of next layer’s neurons. However, the neurons with similar outputs are no equal to the two 
outputs are same. Besides, the neurons with contradictive function are also considered to be pruned. Thus, this 
recovering method is not perfect, so the distinctiveness pruning method can also cause the change of accuracy to the 
network. By the experiments of paper [5] and [15], this kind of flaws will not affect the simple hidden layer network 
hugely. Nevertheless, for the network with two or more hidden layers, the effect is very dramatic. Each hidden layer’s 
input depends on the previous hidden layer’s output, which causes the network fragile for the loss of units. If all hidden 
layers’ neurons are pruned together, the accuracy will decrease a lot. Moreover, the order of pruning is also essential, 
different pruning order of hidden layers can lead to different results, so the performance of different kinds of pruning 
methods are compared in the experiment section. 

To overcome this defect, a progressive strategy is used. The network is pruned layer by layer. After one-layer 
pruning, the network will be training for another 200 epochs. This can make network recover itself after the elimination, 
so the pruning for next time will not affect the accuracy too much.  

3   Results and Discussion 

3.1   Total Accuracy 

Through the 5-fold cross-validation, the final accuracy of the network without pruning is 74.46%. Compared with paper 
[13], whose accuracies were between 74% to 84%, this result is a little bit lower. Note that original paper applied many 
kinds of classification methods so it had lots of accuracies. However, there was no data normalization techniques in the 
original paper, and the writer admitted that the data was very unbalanced, so it was not suitable to use error rate as the 
measurement. Instead, the writer applied a measurement named Area Ratio to measure the effect of different kinds of 
classification techniques, which are hard to compare with the result of this paper. 

3.2   Data Normalization Assessment  

To test the effect of data normalization step, the training result with non-normalized data is used as baseline. The 
outcome is shown below: 
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   (a) Accuracy of normalized data             (b) Accuracy of non-normalized data 

Fig. 2. Accuracy of normalized and non-normalized data training 
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               (a) Loss of normalized data        (b) Loss of non-normalized data 

Fig.3. Loss of normalized and non-normalized data training 

 

As figures show above, network with normalized data can normally work, while the network with non-normalized data 
totally loses the function, so normalized method in this paper works well for this kind of data. The Fig.2 (b) presents 
that the accuracy with training sets, which is as high as 77.82%, does not change along with training steps. This happens 
because the ratio of the negative class and positive class in original data is nearly 3:1, which can lead network only to 
learn the negative class’s features. Thus, the network failed to recognize different patterns. This can be found by 
looking at Fig. 2 and Fig.3. If the outcome is always 0, by calculation, the result will always be 77.82%, which is the 
same to the experiment result in Fig.2. Fig.3 (b), which shows the loss of two kinds of training results with unbalanced 
data, drops sharply at the beginning, and then hardly changes. Because the outcome is always 0, the loss of network 
drops rapidly at the beginning. However, for most of the data has the features of class 0, it is difficult for network to 
learning the right features of another class. As the results, the loss decreases slowly with further training, which 
indicates that the training is utterly useless under the unbalanced data. 

To further observe the effect of unbalanced data, the confusion matrix is applied, and the results are presented 
below: 

Table 2. Confusion matrix of two kinds of results 

        (a) The result of normalized data        (b) The result of non-normalized data 

 

 

 

 

Those two tables further support the observation above. The Table 2(b) illustrates that the output of network is always 
0, so without data normalization, the network cannot work normally. Table 2(a) shows the result of the training after the 
data preparation. From it, it is obvious that the training effect has been improved a lot. With oversampling, the data is 
more balanced so the network can start to learn the features of another class. With the min-max normalization, all the 
larger data are limited between 0 to 1. Because the outputs of sigmoid activation function have bigger difference in the 
domain between 0 to 1 than the domain with larger numbers, the normalization can make the features of inputs more 
prominent, so it is easier for network to learn. Besides, if some inputs are too big, the fixing learning rate may be too 
bigger for the nodes with big inputs than the nodes with small inputs in the back-propagation steps, so the converging 
will be slow. The min-max normalization makes all the inputs in the similar in similar domain, so the fixing learning 
rate can have similar effect to each weight in each node, and the network will converge quickly. Therefore, overall, the 
data normalization methods in this paper is helpful to deal with the unbalanced data. 

3.3   Pruning Assessment 

3.3.1 Accuracy assessment. To test the effect of the progressive pruning method in the paper, different methods are 
applied to the 5-fold cross-validation, and their results are compared. The comparison is illustrated below: 
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Fig. 4. Comparison of different pruning methods 

As it presents, the accuracy of network without pruning, which is shown in green line, is high and stable in this figure. 
Compare with it, the progressive pruning cutting second hidden layer first, which is shown in yellow, also performs 
good and stable. However, the network with cutting first hidden layer first pruning and the network without progressive 
pruning method have poor performance. Their accuracy in average is lower than the other two methods, and they are 
very unstable for the number of accuracy fluctuate up and down. For the non-progressive pruning method, the effect is 
bad because the multi-hidden-layer network can be more sensitive to the pruning than the single-hidden-layer network. 
For the network with multi-hidden layer, the higher level hidden layers have the high concentration characters from the 
features of bottom hidden layers. Although in ideal state, which means the activation output of pruning nodes are all 
same of contradictive to each other, the outcome will not be affected. Nevertheless, the threshold is 15 degrees, so the 
pruning method can always make some changes to the accuracy. If nodes of those higher layers are eliminated, then the 
highly extracted features can be lost, causing huge decreasing of accuracy of the network. This is also the reason why 
the pruning method cutting the first hidden layer first cannot perform well comparing to its counterparts. Although there 
is progressive recovering, only the first hidden layer can get benefits from it. Hence, the progressive pruning method 
with second hidden layer cutting first can keep the accuracy of the original network. 

3.3.2 Stability Assessment. To test the stability of neural network under different thresholds, several 5-fold cross-
validation tests are applied, and the average results are shown in the table below: 

Table 3. Confusion matrix of two kind of results 

Minimum Angle Accuracy 
 (non-pruning) 

Accuracy 
(pruning) 

5 74.18% 74.42 % 

15 74.46% 74.02 % 

25 74.63% 70.75 % 

35 74.31% 65.41 % 

45 74.03% 59.57 % 

55 74.40% 54.20 % 

65 74.25% 62.38 % 

75 73.48% 57.81 % 
 
 

Table 3 presents that with the increase of the threshold, the pruning accuracy decreases, which is similar to what has 
been gotten in my previous work [16]. There are some figures that do not conform the decrement law, one reason is that 
the weights of pruning network are different for each test, which means the training of network is a stochastic process, 
so the accuracy can be high after pruning; another reason is that the network is trained for a two-element classification 



problem, so if the outputs are all 0 or 1, the accuracy can still be 50%, but this does not mean the effect of network is 
good. To further test the performance of the network, the f1-score measurement is applied, the formula is shown below: 
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The precision is the ratio of the true positive samples to the all positive samples, and the recall is the ratio of the true 
positive samples to all the true samples. It can be used to measure the quality of the network. If all the outputs are 0, 
then the accuracy will not drop below 50%, but the f1-score will be 0. The result is listed below: 

Table 4. Confusion matrix of two kind of results 

Minimum Angle F1-Score 

5 0.567 

15 0.561 

25 0.554 

35 0.529 

45 0 

55 0 

65 0.007 

75 0 
 

Combining Table 4 with Table 3, the network still works well before the threshold of 25, but with decreasing of 
thresholds, it will have a very poor performance. This pattern is similar to the single hidden-layer network, and it proves 
that the progressive method in this paper will not affect the performance of the network greatly before the certain 
thresholds. 

3.4   Overfitting Assessment 

For checking whether the network is overfitting or not, the final result of the network with test sets is compared with the 
results with training set. Under the threshold of 15 degree, the accuracy for training set is 74.37%, and the accuracy for 
test set is 73.89%. There are only 0.48% percent differences. Thus, the network in this paper is not overfitting. 

4   Conclusion and Future Work 

This paper focuses on pruning of multi-hidden-layer networks with unbalanced data. The oversampling and min-max 
normalization techniques are applied to reduce the effect of unbalanced data and are proved to be useful by the 
experiments. After the error becoming stable, the second hidden layer of neural network will be cut first, then a 
progressive training with 200 epochs will be applied to recover the influence of the pruning step. Finally, the first 
hidden layer is pruned and there is no further training required. Through experiments, the progressive pruning method 
has great effect compared to non-progressive pruning techniques. With small angle threshold, the pruning will not affect 
the function of network greatly, so this method is also useful in the multi-layer network and can observably reduce the 
size of units. 

Nevertheless, there are still many works to do. First, the final outcome compared to the paper [13] is still not ideal, 
which means there is still space for the data normalization. Second, this method only considered the similarity and 
contradiction between pairs of neurons. However, the bunch of units can also have same of contrary functions, creating 
redundancy to the network. Thus, in the future work, more data normalization techniques can be tested to different 
kinds of noisy data to find the better solutions to clean the data, and the function of bunch of neurons can also be 
researched to improve the performance of the network pruning. 
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