
The Effects of a Sparse-Autoencoder of the Detection of 

Spam Emails 

Robert Whittaker 
 

Research School of Computer Science 

The Australian National University, Acton, ACT, 2601, Australia 

Abstract. Detecting spam emails is an important component of bringing 

revenue to email providers and is useful for the owner of an email address. While 

there are numerous spam email detection systems, none reliably detect spam at a 

100% accuracy. This paper shows that we can reliably get an accuracy of 93.72%. 

using normalization, a sparse auto-encoder and dropout. It explains the processes 

needed to get this accuracy and compares the results found to Dimitrakakis and 

Bengio. It also makes recommendations for future methods that can be used to 

increase the accuracy of a spam detection mechanism. 
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1   Introduction 

Spam emails are a common problem faced by consumers who have an email account 

to both send emails and receive emails from others. Spam emails take a variety of forms 

that target the consumer for a variety of reasons although all are unsolicited. These 

reasons include the advertising of products, the sending of viruses and attempting to 

scam the consumer. Many companies currently have their own email service and are 

thus trying to compete for consumers to use their product. As such services with a more 

accurate spam detection technique do more to protect their consumers, thus consumers 

are more likely to use them. As such a database which is used to detect possible emails 

which contain spam is the Spambase dataset, which describes features of the email as 

classifies whether it is spam or not. 
The pre-processing of data is a crucial aspect of a neural network to learn.  

Normalization of the input data prior to the training process of the network is both 

important to receive good results and to reduce the calculation time of the network. [1] 

An important problem faced when creating a neural network as it needs to be 

determined before modelling whether data needs to be normalized or not. 

Normalization within a neural network help remove some geometrical biases within 

some of the data vectors. [2]  

In this report we focus on implementing a neural network to identifying spam emails 

using the Spambase dataset. In section 2, the architecture of the neural network is 

explained which includes the normalization of the data, the sparse auto-encoder and 



dropout. In section 3, we analyse our results and compare then to Dimitrakakis and Bengio 

paper. [3] In section 5, potential future works on the paper are suggested. 
 

 

2   Method 

2.1   Data Analysis 

 

 

The raw data used in this report is called ‘Spambase’ and originates from Hewlett-

Packard. This information is represented within a grid of 266858 values. Each vector 

in the image contains 58. This dataset was chosen for investigating the effects of 

normalizing data is it contained 4601 instances and 57 attributes. [4] 

 

 

Table 1.  Information on data shown in the Spambase folder 

Column 

Numbers 

Description Data Type 

1-48 The percentage of times that a word 

occurs within the e-mail.  

Continuous real [0, 100] 

49-54 

 

55 

The percentage of times that a 

character occurs within the e-mail. 

The average length of uninterrupted 

sequences of capital letters within 

the e-mail. 

Continuous real [0, 100] 

 

Continuous real [1, …] 

56 The length of the longest 

uninterrupted sequence of capital 

letters within the e-mail. 

Continuous real [1, …] 

57 The total number of capital letters 

within the e-mail. 

Continuous real [1, …] 

58 The target, 0 – denotes it is not 

spam. 1 – denotes it is spam. 

Nominal {0,1} 

  

This paper uses dataset to investigate on which pieces of data need to be normalized. 

The data was analysed to work out which data should be normalized. This is shown in 

the tables below. 

 

Average Statistics regarding the number of words and characters within an e-mail 



Table 2.  Statistics for all data which involve the number of words and characters within the 

email. 

Method Value 

Maximum 12.08  

Minimum 

Mean 

0 

0.18 

Median 0.03 

Standard Deviation 0.61 

  

As shown in the statistics the values found within the data are moderately small. This 

is as the data is a percentage with its maximum value of 12. 

 

Average Length of Uninterrupted Sequence of Capital Letters: 

Table 3.  Statistics for Average Length of Uninterrupted Sequence of Capital Letters 

Method Value 

Maximum 1102.50  

Minimum 

Mean 

1 

5.19 

Median 2.28 

Standard Deviation 31.7294487 

 
 

Length of Longest Uninterrupted Sequence of Capital Letters: 

Table 4.  Statistics for Length of Longest Uninterrupted Sequence of Capital Letters 

Method Value 

Maximum 9989.00  

Minimum 

Mean 

1 

52.17 

Median 15 

Standard Deviation 194.89131 

 

Total Number of Capital Letters: 

Table 5.  Statistics for Total Number of Capital Letters 

Method Value 

Maximum 15841 

Minimum 

Mean 

1 

283.29 

Median 95 

Standard Deviation 606.347851 

 

 



As shown in the three tables above, the pieces of data had a much larger variation than 

the rest of the data. This suggests that more pre-processing needed to be done on these 

pieces of data. 

The data in the network was also split into a learning set and a test set. It was 

separated by having 80% of the data within the learning set and 20% of the data within 

the test set. 

2.2  Normalization 

The normalization method used to normalise the data within the network was the min-

max normalization technique [1]. In the min-max normalization approach the data 

normalized is scaled to a fixed range between 0 and 1. This thus results is a much 

smaller standard deviation, which can remove much of the biases caused by outliers. 

[5] The formula for the min-max normalization technique is shown in equation 1 below. 

x = (x – min(x)) / (max(x) – min(x)) . 

Not all the data within the dataset needs to be normalized. For example, in 

certain circumstances such as already small spread of data normalizing the data 

can thus decrease the accuracy of the neural network learning of the data. As 

such it was found on the Spambase dataset, it was optimal just to normalize 

columns 55 – 58. By normalizing these columns individually the network learnt 

at a much faster rate and had an increased final accuracy. 

2.3  Sparse-Autoencoder 

The deep-learning method within a 

neural network is the 

implementation of a sparse-

autoencoder. A sparse auto 

encoders can learn from a range of 

features, which include audio, text 

and etc. [6] An auto encoder is a 

learning algorithm that is 

unsupervised, it applies 

backpropagation, thus sets the target 

values to be equal to the inputs. [6] 

An example diagram of an 

autoencoder is shown in figure 1. A 

sparse-autoencoder was 

implemented once per epoch within the 

neural network on the Spambase 

dataset. 

(1) 

Fig. 1. An example of a sparse 

autoencoder. [6] 



2.4  Dropout 

Overfitting, is a major problem for large neural networks as many relationships 

between each of the layers exist. Dropout is technique that prevents overfitting 

and makes a ways of combining many neural network architectures efficiently. 

[7] The choice of which units to temporarily remove from the network is 

random and the units chosen to dropout are both hidden and visible in the neural 

network. Due to there being a large number of layers within a Deep learning 

network. Dropout can significantly reduce the number of connected neurons 

within the network. Figure 2, shows the effects that a dropout function has on a 

network compared to a network without dropout. 

 

 
Fig. 2. An example of a standard neural network (a) compared to that of one 

with dropout (b). [7]  

3  Results and Discussion 

The neural networks were train for 1000 epochs at a learning rate of 0.5. The effects of 

adding a deep learning network with both a spare auto-encoder and dropout function 

were testing with that of a simple 3 layer neural network. 

When a 3 layer neural network was used with the normalized Spambase data 

set a final testing accuracy after 1000 epochs of 90.73% was recorded. After 100 epochs 

an accuracy of 74.80% was record. Figure 3, shows a graph of the accuracy of the 

network on the test data after each epoch. 



 

Fig. 3. The accuracy of the neural network on the test data at a varied number of epochs when 

normalising rows 55-57 of the data. 

From figure 3, It was found that for the majority of the epochs the accuracy steadily 

increased. With a high increase in accuracy at the beginning and it started to approach 

a maxima around 91% towards the end. There was a low amount of fluctuations within 

the accuracy between the epochs which may have been because all the data was used 

for each layer within the network. 

When more layers were added to the neural network, combined with a sparse 

auto-encoder and dropout, the final accuracy after 1000 epochs was found to be 

93.72%. After 100 epochs it was 87.78%. Figure 4, shows a graph of the accuracy of 

the network on the test data after each epoch. 

 

 

 



Fig. 4. The accuracy of the neural network on the test data at a varied number of epochs when 

normalising rows 55-57 of the data and adding a sparse-autoencoder and dropout. 

It was found the neural network was a lot slower when a sparse auto-encoder and 

dropout was added, thus it took a lot longer to read 1000 epochs. The accuracy of the 

neural network generally increased after each epoch, although at the start it increased 

at a much greater rate. Although there were large fluctuation in the accuracy of up to 

5%. This may have been caused by the dropout algorithms as some units which may 

have been important to keeping a high accuracy may have been removed temporarily. 

It was found that a deep learning network with dropout and a sparse auto-

encoder produced better results than a simple 3 layer network as expected. The accuracy 

after 1000 epochs was approximately 3% larger, and it also increased at a faster rate. 

Although the deep learning network had much larger fluctuations, which sometimes 

caused the accuracy to degrease between epochs.  

 

 

4.  Comparison 

The results from the testing were compared to those of a Dimitrakakis and Bengio’s Online 

Policy Adaption for Ensemble Classifiers paper. [3] As such the paper recorded their results 

as how much classification error their results had for each method which they used. As 

such, they record an 8.33% error for multi-layer perceptrons (MLP), a 6.48% error for 

AdaBoost (Boost), a 7.75% error for the mixture of experts architecture (MOE) and a 

7.71% error for reinforcement learning (RL).  [3] The results published showed the 

errors after 100 epochs, therefore it was reasonable to compare our results at 100 epochs 

to Dimitrakakis and Dengio’s results. 

 
 



 

Fig. 1. Comparison of our results with those of Dimitrakakis and Bengio at 100 epochs. [3] 

It was found that at 100 epochs both the 3 Layer and the Deep Learning approaches had 

a lower accuracy than those found by Dimitrakakis and Bengio. [3]  It was found that 

the 3 layer network had a significantly lower accuracy than the papers results, 

meanwhile the deep learning neural network with a spare auto-encoder and dropout 

performed only slightly lower. It may be possible to get our results much closer to the 

results of the paper by fiddling around with the network to get the optimal variables, 

thus causing the final accuracy to be higher. 

 

5  Future works 

There are many possible ways in which the accuracy of the neural network that detects 

spam emails can be improved upon. These ways included changes that can be made to 

both the pre-processing of the data and the architecture of the network itself.  

 A method in which a future paper could improve upon the results would be to 

use Z normalization instead of min-max normalization on the Spambase dataset. This 

minor pre-processing change could help remove some of the biases within the dataset 

and thus causing the final accuracy to be higher. 

 There are 57 features current in the Spambase dataset. These features are 

mostly just the proportion of how many times a word appears within an email. A neural 

network may be for successful in detecting spam emails if more features were available. 

This would thus mean there would be more features to learn from with each having a 

potentially different weight. 

 A major weakness in the results of the network with the sparse auto-encoder 

and the dropout function was that there was a large amount of fluctuations with the 

accuracy of the data. A major improvement would be to decrease the size and rate of 
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these fluctuations. To do this another deep learning technique could be implemented 

and tested to thus get more accurate results. 

6  Conclusion 

Overall, it was found that the addition of a sparse auto-encoder and dropout to a neural 

network on the Spambase dataset greatly increased its accuracy. It was found that via 

normalization and a 3 layer neural network an accuracy of 87.78 could be obtained. 

Although, it was found that the addition of a sparse-autoencoder and dropout increased 

the accuracy to 93.72%. It was found that the results of this paper were slightly less 

than those found by Dimitrakakis and Bengio. Finally, future works were suggested to 

increase the identification accuracy of spam emails by adding more features to the 

dataset, using Z normalization instead of min-max normalization and different methods 

could be used to increase the accuracy. 
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