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Abstract. When creating a Neural Network (NN) to solve a classification problem, where the data comes from 

a real-world data set. We can often find that the data can be unreliable. It can contain two much information 

on some classes. Whilst not providing enough information on others and in small datasets significant outliers 

can pose an issue to data quality. These factors all contribute to the difficulty of training and testing effective 

NNs. In this report I will present a comparison of a basic NN of my own design and a NN implemented by 

Jamie Twycross[1]. I will then compare with a new NN with the addition of some of the techniques for 

improving NN data outlined in the paper by R.A. Bustos and T.D. Gedeon[2]. Then demonstrate the benefit of 

the extra techniques used to improve the NN. As well as an implementation of the technique to a more complex 

Recurrent Neural Network (RNN). 

 

1   Introduction 

When creating a Neural Network (NN) for a classification problem. There are many applicable 

measures of performance. I will be focusing on the accuracy of the NN, that is how many objects it 

predicts correctly compared to the total number of objects in the supplied dataset. Along with the 

loss of the NN, that is the difference between the predicted output and the actual output. These 

variables have been chosen as each is an important measure demonstrating the quality of a model 

and allows direct comparison between different NNs to be made. Which can then be used to 

quantify whether the differences between those NNs are improving or decreasing overall quality. 

Having a suitable representation of the patterns available in the data set that the NN takes as input. 

Will have many implications for both the accuracy of the NN and the loss incurred when the NN 

makes an incorrect decision. 

The data set used in this report comes from the UCI data repository[3] and will henceforth be 

referred to as the Voting dataset. The Voting dataset set includes the votes for each of the U.S. 

House of Representatives Congressmen on 16 key votes. The dataset contains 435 instances and 16 

attributes. The class in this data set is binary as each instance is either republican or democrat. 

Similarly, each attribute is primarily binary recording either a yes or no. In some cases, the vote was 

unknown and is encoded as a third option.  

The motivation to pick this data set was in part due to the simple, binary nature of the data. Thus, 

making the implementation of additional techniques easier to perform and directly measure their 

impact on NN performance. As well as a personal interest in the psychological nature of the data. 

That is the ability for a program to accurately determine what sort of person (politically) someone 

might be based on the decisions (in this case voting patterns) that they have made. 

In this report I will present the results of three simple NNs being used to solve a classification 

problem using the Voting data set. This was a simple classification problem, attempting to train a NN 

such that it could correctly classify a republican or a democrat based on the way they voted.  The 

first of which being a simple NN of my own design with three layers. Which works by predicting the 

class Y based on the input value X which contains the values for each attribute. Which will now be 



referred to as NN1. The second being the results of a simple naïve-Bayesian NN implemented in a 

paper by Jamie Twycross[1]. Referred to as NB1. This will provide a base for my own NN to be 

compared to. Then I will present another NN based on the first NN that I produced. With the 

addition of a new method for refining the input data set based on techniques demonstrated in the 

paper by R.A. Bustos and T.D. Gedeon[2]. Referred to as NN2. I have presented the results and 

experience as below using statistical techniques to quantify differences between the different NN’s 

outputs. Finally, I will attempt to apply the same technique to a more complex deep neural network 

specifically a recurrent neural network (RNN). The RNN differs from the previous NNs as it has 

feedback connections from output to input giving it the ability to store information in memory[4]. It 

will be tested using a different dataset called “textData” that can be found in the appendix of this 

paper and was supplied by the ANU.  

2   Method 

2.1 Refining the Dataset 

Upon downloading the dataset from the UCI repository (house-votes-84.csv) I first went about 

performing some pre-processing on the data. I moved the class column that held the 

republican/democrat value for each instance from the 1st column in the data set to the last column 

of the dataset. This was a change I performed to make it easier on myself and might not be 

necessary in future work. The next step was to remove the header rows from the dataset. This 

information was no longer relevant as I knew that the last column was the class column and I would 

extract the information on democratic/republican favoured votes later. As all the binary values were 

encoded using strings these values needed to be re-encoded as numeric values to fit my NNs. I 

replaced the ‘y’ and ‘n’ values with 0 and 1 respectively. The ‘?’ value that encoded an unknown vote 

was encoded to 0.5 which when taken with yes being 0 and no being 1 reveals no information about 

the possible class. Finally, I replaced the strings “republican” and “democrat” in the class column 

with 0 and 1 respectively.   

2.2 Testing and Training the NN1 

The dataset was then split into two sets a training set that contained 90% of the original data and a 

testing set that contained the remaining 10% of the data. The dataset is then fed into a NN that 

consisted of three layers. An input layer with 16 neurons, a hidden layer with 30 neurons and an 

output layer with a single neuron representing the binary class 0 or 1 (republican or democrat). The 

NN trained over 2500 epochs which was the maximum number before it started losing accuracy. 

These attributes were chosen based on initial testing of the NN with various attribute values and 

these provided good results. This NN was trained using Stochastic Gradient Descent as an optimiser 

and had a learning rate of 0.01. This simple NN was compared to NB1 and the results are listed 

below. Both NNs were used to run a 10-fold cross validation. Where the training and test data are 

split into 10 sets, 9 are used for training 1 is used for testing. Then the 1 set that is used for testing is 

rotated until each set has been used for testing once. 

2.3 Testing and Training the NN2 

NN2 is the same as NN1, detailed above. Except it implements additional methods for refining 

training data. In order to increase the quality of the results I wanted to refine the input dataset. To 

do this the NN takes a sum of each of the two classes. It then creates an object to record the type of 

each vote. That is whether the vote was dominated by republican or democratic yes voters. Then by 



using this list create a mean for each of republicans who voted in favour of votes dominated by 

democrats and a mean for democrats who voted in favour of votes dominated by republicans. These 

means provide a baseline for each group that allows us to begin removing outliers. The variance can 

then be taken and finally the standard deviation can be calculated. Using the standard deviation 

remove the outliers from the dataset. I chose to remove those voters who sat outside of a 95% 

confidence interval in the positive direction. This is because a democrat who votes more republican 

than the majority of other members of their class can confuse the NN, but a democrat who votes 

less republican does not lose information about their class and vice versa.  

2.4 Testing and Training RNN1 and RNN2 

RNN1 and RNN2 are functionally the same except that RNN2 implements some additional functions 

to process the input data based on the same principles as the technique used for the simpler NNs. 

Both RNNs are run over 5000 iterations. This is the point that the decreases in loss become minimal. 

Each RNN has 100 hidden neurons, a sequence length of 50 and a learning rate of (1e -1). The data is 

read in to each NN as a list data structure. In the case of RNN1 it starts processing immediately. As 

stated RNN2 implements additionally pre-processing. The NN takes a copy of the data and removes 

all alphabet characters and the single whitespace character. It then takes the number of occurrences 

of the remaining chars, produces a mean, calculates variance and standard deviation and then 

collates a list of outlier characters. In this case the outliers on the lower end of the spectrum are 

removed as the removal of these characters does not remove as much information as removing 

outliers on the other end of the spectrum. This list is then used to remove these characters from the 

original dataset and then processing begins in the same manner as RNN1.  

3   Results 

3.1 Results for NN1 

As detailed previously I ran a 10-fold cross validation on each NN.  

10-fold cross validation of NN1: 

Testing Accuracy: 94.23 % Loss: 0.2096 

Testing Accuracy: 91.89 % Loss: 0.2112 

Testing Accuracy: 97.37 % Loss: 0.2141 

Testing Accuracy: 87.18 % Loss: 0.2073 

Testing Accuracy: 92.31 % Loss: 0.2117 

Testing Accuracy: 95.00 % Loss: 0.2098 

Testing Accuracy: 97.22 % Loss: 0.2102 

Testing Accuracy: 92.68 % Loss: 0.2086 

Testing Accuracy: 96.43 % Loss: 0.2204 

Testing Accuracy: 97.14 % Loss: 0.2022 

Figure 3.1 Table contains testing accuracy and loss for each test for first NN 

Based on the results from the testing we can calculate the mean, standard deviation and 95% 

confidence interval for both the Testing Accuracy and the Loss. 

 Mean Standard Deviation 95% Confidence interval 

Accuracy 94.145% 3.230% 92.143% - 96.147% 

Loss 0.211 0.005 0.208 - 0.213 

 



3.2 Results for the NB1 

This NN was also tested with 10-fold cross validation 

 Mean Standard Deviation 95% Confidence interval 

Accuracy 90.1% 4.9% 85.7% - 94.5% 

 

The predictive accuracy was 90.1% with standard deviation of 4.9% and a 95% confidence interval of 

8.8%. No data was given for the loss of this NN.  

3.3 Results for NN2 with additional techniques implemented 

10-fold cross validation of NN2: 

Testing Accuracy: 91.67 % Loss: 0.1234 

Testing Accuracy: 90.70 % Loss: 0.1053 

Testing Accuracy: 86.27 % Loss: 0.1052 

Testing Accuracy: 92.00 % Loss: 0.1125 

Testing Accuracy: 95.45 % Loss: 0.1056 

Testing Accuracy: 84.62 % Loss: 0.1148 

Testing Accuracy: 88.89 % Loss: 0.1080 

Testing Accuracy: 85.71 % Loss: 0.1081 

Testing Accuracy: 82.22 % Loss: 0.1098 

Testing Accuracy: 92.00 % Loss: 0.1131 

Figure 3.2 Table contains testing accuracy and loss for each test for second NN 

Based on the results from the testing we can calculate the mean, standard deviation and 95% 

confidence interval for both the Testing Accuracy and the Loss. 

 Mean Standard Deviation 95% Confidence interval 

Accuracy 88.953% 4.124% 86.397% - 91.509% 

Loss 0.11058 0.006 0.107 - 0.114 

 

3.4 Results for RN1 

Loss 

2.091 

1.912 

2.156 

1.794 

1.883 

1.976 

1.970 

1.974 

1.806 

1.899 

Figure 3.4 Table contains loss recorded for each test of RNN1 

Based on the results from the testing we can calculate the mean, standard deviation and 95% 

confidence interval for both the Testing Accuracy and the Loss. 

 Mean Standard Deviation 95% Confidence interval 



Loss 1.946 0.114 1.875 - 2.017 

 

3.5 Results for RN2 

Loss 

1.855 

1.804 

2.017 

1.881 

1.928 

1.954 

1.868 

1.674 

1.861 

1.938 

Figure 3.3 Table contains loss recorded for each test of RNN2 

Based on the results from the testing we can calculate the mean, standard deviation and 95% 

confidence interval for both the Testing Accuracy and the Loss. 

 Mean Standard Deviation 95% Confidence interval 

Loss 1.878 0.093 1.820 - 1.927 

 

4   Discussion 

4.1 Comparison of NN1 and NB1 

Using the same Voting dataset, initially we see that NN1 performs better than NB1. NN1 appears to 

have a higher mean predictive accuracy, lower standard deviation and as a result a smaller 95% 

confidence interval than NB1. However, these metrics can be difficult to determine if either model is 

truly better as accuracy can vary greatly from test to test and given that the mean of NN1 is within 

one standard deviation of NB1’s mean this indicates that the results are too similar to say that one is 

significantly better than the other. In spite of the similarities between the two. NN1 serves its 

purpose well. As a base line that is comparable to other NN implementations on the same data set. 

That can then be then be used to compare to and understand the value of other techniques in 

relation to NN performance. 

4.2 Comparison of NN1 and NN2 

Each of these NNs used the same initial Voting dataset. However as outlined in the method section 

NN2 has methods to remove outliers from the data in an attempt to refine the data. Which in turn 

creates a better NN for the classification problem. Based on the results above we can see that the 

removal of outliers has caused the accuracy to decrease. Although accuracy is not always the best 

indicator of performance due to accuracy varying, sometimes greatly, within runs on a single NN. 

Additionally, we may be willing to trade off accuracy in favour of significant increases in other areas 

for certain fields of NN problems. In saying this we can easily see that the Mean predictive accuracy 

of NN2 has fallen compared to NN1. However, we can see that the Mean of the loss for the NN2 has 

improved significantly reducing by almost half of that of NN1. It seems to be that the improvements 

in loss brought about by the new technique is outweighing the slight decrease in accuracy that has 



come with it. Suggesting that this technique has reduced the predictive accuracy of the NN on the 

testing set (decreased accuracy) but that the NN is making less mistakes during training. 

4.3 Comparison of RNN1 and RNN2 

Each of the RNNs used the same initial dataset. The difference in function between the two is the 

pre-processing functions implemented by RNN2 on said data set. These functions were based on the 

principles for data processing that saw a successful decrease in loss when applied to NN2 using the 

voting dataset. The concept is still to remove outliers from the data that lead to increased loss in the 

data. However, unlike the success seen for NN2 compared to NN1 the difference in results between 

RNNs is no where near as significant.  

 

Figure 4.1 Comparison of RNN1 and RNN2 

As seen in figure 4.1 we can see that RNN2 has a tighter range than RNN1 and it indicates a slightly 

decreased loss in comparison. However, we can see that the majority of the data points of RNN1 fits 

within one standard deviation of the mean of RNN2 so it is difficult to say whether there was a real 

effect on the loss brought about by the pre-processing functions or whether the improvement is an 

anomaly of the runs recorded for these results. Even proceeding under the assumption that the 

additional pre-processing is what resulted in the decreased loss we can see that the end result was 

ultimately very small.   

5   Conclusion 

5.1 Future Work 

In order to keep the results consistent and comparable I chose to keep the internal values for each 

NN consistent. i.e Number of epochs, numbers of neurons, numbers of layers, learning rates and 

optimisers. After implementing and testing the second NN I discovered that there were other effects 

that the techniques were having on the results other than the improved loss and decreased accuracy 

described above.  



 

Figure 4.1 Side by side comparison of first and second NNs (second NN on the left, first NN on the 

right) 

As can be seen in figure 4.1 the number of epochs before accuracy improvement is minimal is 

substantially lower for NN2 and the final testing accuracy has actually decreased from the training 

accuracy. Which is not the case for NN1. This is supported by the lowered loss indicating less 

mistakes being made during training leading to NN2 being trained faster than NN1.  

So, in future work I would want to look at modifying the number of epochs and other internal NN 

attributes to see if in combination with the newly implemented techniques the NN could be 

improved further for the Voting classification problem. I also think that the methods used on the 

RNNs could be further improved by conducting more research on what outliers can be removed with 

resulting information losses being as small as possible. This could then tested over an increased 

series of runs to improve confidence that the methods are improving the output or confidently rule 

them out as useful in the field of RNNs.   

5.2 Closing Statements 

I have shown that for a classification problem using the Voting dataset we can produce a simple NN 

to solve this problem. That this NN can perform as well as other simple NNs produced by others in 

the field for the same problem and dataset. I have shown that the result of this NN can then be 

improved upon in terms of Loss if not Accuracy. By refining the input dataset to have a reduced 

number of outlier classes that can cause a NN to lose performance.  

I have shown that using a similar methods to try and improve RNNs has proved mostly ineffective 

and at best has produced the most marginal positive effect.   
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Appendix: 

Dataset “textData” is in the attached zip files submitted to easychair 

 

http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records

