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Abstract. The purpose of this study was to use neural network to diagnose breast cancer based on 30 attributes. The 
study explored the limitations of standard backpropagation algorithm and attempted to improve the model using the 
resilient backpropagation (RPROP) algorithm. The optimised model with RPROP outperformed the baseline with 
standard backpropagation in terms of both training time and accuracy. The effect of learning rate on the two 
algorithms was also explored. An attempt was made to further optimise the RPROP model with genetic algorithm, 
but it did not lead to an improvement in performance.  
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1   Introduction 

1.1   Background 

Caused by abnormal growth of cells lining the breast ducts, breast cancer is the most common cancer for women 
worldwide [1] and the second most common cancer to cause death for Australian women [2]. The abnormal cell growth 
has the potential to spread to other parts of the body if uncontrolled. Fortunately, breast cancer can be correctly 
diagnosed through several mechanisms, and the survival rate is over 90% if diagnosed before abnormal cell growth 
spread to other parts of the body [2]. The purpose of this study is to diagnose breast cancer with neural network.  

1.2   Dataset Selection 

The chosen dataset was created and donated by researchers at the University of Wisconsin in November 1995 [3]. The 
dataset had appeared in several medical literatures and been used multiple times in the past to train a network for 
diagnosing breast cancer [3].  
    The dataset contains 569 instances and 32 features. Each instance is a digitized image of a fine needle aspirate (FNA) 
of a breast mass, which describes characteristics of the cell nuclei in the image. The first feature contains the ID of the 
instance, while the second feature is the label (‘B’ for ‘Benign’ and ‘M’ for ‘Malignant’). The remaining 30 features are 
composed of the (1) mean, (2) standard error, and (3) “worst” (mean of the three largest values) of the following ten 
characteristics of each cell nucleus:   

Table 1.  Attributes of the dataset: (1) mean, (2) standard error, and (3) “worst” of the following 10 real-valued characteristics of 
each cell nucleus3.  

Characteristic Notes 
(a) Radius  
(b) Texture Standard deviation of grey-scale values 
(c) Perimeter  
(d) Area  
(e) Smoothness Local variation in radius lengths 
(f) Compactness (perimeter^2 / area – 1.0) 
(g) Concavity Severity of concave portions of the contour  
(h) Concave points Number of concave portions of the contour 
(i) Symmetry  
(j) Fractal dimension “coastline approximation” - 1 

 
    There are several reasons why this particular dataset was chosen. First and foremost, several studies have been able to 
use this dataset to train their model to diagnose breast cancer with high accuracy [4] [5], suggesting the attributes 
chosen by the creators of this dataset are likely highly correlated with breast cancer. Second, the dataset contains no 
missing data [3]. Third, with 357 of the instances belonging to one class and the remaining 212 instances belonging to 



the other, both classes of the dataset are fairly well represented. This is an important characteristic and can not be said 
for all datasets available on UCI Machine Learning Repository [6]. For example, in the cardiac arrhythmia dataset [7], 
one class makes up about 54% of the instances, while the remaining 15 classes make up the rest of the dataset. In fact, 
nine of the sixteen classes each makes up less than 3% of the dataset as outlined in Table 2. When the dataset is 
dominated by one class and the remaining classes are negligible, it is easy for the network to overfit and simply classify 
instances to the dominant class [8]. Different from the arrhythmia dataset, the breast cancer dataset [3] is fairly well 
distributed, minimizing the potential harm of this problem. For these reasons, the breast cancer dataset [3] donated by 
researchers at the University of Wisconsin was chosen to train the network for breast cancer diagnosis. 

Table 2.  Class distribution of the cardiac arrhythmia dataset [7].  

Class Code Number of Instances (& percentage) 
01 245   (54.20%) 
02 44      (9.73%) 
03 15      (3.32%) 
04 15      (3.32%) 
05 13      (2.88%) 
06 25      (5.53%) 
07 3        (0.66%) 
08 2        (0.44%) 
09 9        (1.99%) 
10 50      (11.06%) 
11 0        (0%) 
12 0        (0%) 
13 0        (0%) 
14 4        (0.88%) 
15 5        (1.11%) 
16 22      (4.87%) 

 

1.3   Supervised Learning with Artificial Neural Network 

The study utilised a supervised learning with a neural network made up of several hidden layers of artificial neurons and 
weights associated with connections in the network. The objective of the network was to incrementally adjust its 
weights through epochs of training to minimise loss and map inputs to the correct class. One common approach for this 
optimisation is the backpropagation algorithm with gradient descent.  
    The underlying principle of supervised learning with artificial neural network is to repeatedly apply the chain rule to 
calculate the partial derivative for each weight in the network; once the partial derivatives are determined, the 
corresponding weight updates are determined using the backpropagation algorithm [9]. In the standard backpropagation 
algorithm, the weight update is calculated as the product of the negative derivative and a constant value known as the 
learning rate to produce a scaled move in the opposite direction of the gradient [9].  

1.4   Limitations of Backpropagation 

 
Though popular and relatively straightforward, the backpropagation algorithm has its limits. First, the performance of 
the algorithm is largely dependent on the choice of the learning rate. A learning rate that is too small will require 
numerous epochs to reach an acceptable accuracy, while a learning rate that is too large can lead to oscillation thereby 
preventing the error to fall below an acceptable level [10]. Second, besides the learning rate, the performance of 
backpropagation depends on the partial derivative [10]. Large derivates translate to large weight steps, which can 
potentially take the algorithm to a entirely different region of weight space [10]. Although a momentum parameter was 
proposed to scale the influence of weight steps, it has been documented that it “is not a general technique for gaining 
stability or speeding up convergence” as comparable and sometimes even better results can be obtained without the 
momentum term [9].  

1.5   Resilient Backpropagation (RPROP) 

In response to backpropagation’s limitations, Riedmiller and Braun proposed resilient backpropagation (RPROP). 
Different from standard backpropagation, RPROP determines the size of the weight update without considering the size 
of the partial derivative [10] to avoid the problems addressed in the previous paragraph. Under RPROP, each weight 
between neurons i and j has its own update value Dij, which is determined during training based on the error function E 



based on the following: Whenever the partial derivative of weight wij switches sign, indicating the last update was too 

big and a local minimum was jumped over, update value Dij gets decreased by a constant factor h- [10]. On the other 

hand, when the derivative retains its sign, update value Dij gets increased by the a constant factor h+ to expedite training 
[10]. After the update value for each weight is adjusted, the weight update follows:  

 
with the exception that when the partial derivative switches sign—when the previous step was too big and thereby 
missed the minimum—the previous weight update is reverted: 

 
    In summary, the underlying principle of RPROP is the direct modification of the weight update values Dij; with the 
introduction of these resilient update values that do not depend on the size of the partial derivatives, RPROP’s 
performance is not dependent on unforeseeable gradient behaviour like the standard backpropagation algorithm [9].  
    This study utilised RPROP in an attempt to improve the neural network for diagnosing breast cancer.  

1.6   Genetic Algorithm (GA) 

Genetic algorithm was explored in attempt to find better hyperparameters for the neural network to further optimise the 
RPROP model. Similar efforts have been made in the past, and some researchers successfully improved the 
performance of their neural networks using genetic algorithms to find optimal hyperparameters [11].   

2   Method 

All the codes can be found in the attached zip file. 

2.1   Data Pre-processing  

The ‘data.csv’ file in the ‘data’ directory contains the original data downloaded from the UCI Machine Learning 
Repository [12]. The first column of the dataset, which contains the ID numbers of each instance, was not considered as 
IDs add unnecessary noise and are unlikely to be correlated with breast cancer. The second column, containing the 
labels, was transformed to numeric values by mapping ‘B’ (benign) to 0 and ‘M’ (malignant) to 1. The remaining 30 
columns contain the attributes discussed previously in Table 1; these values were normalised to the range of zero to one 
and fed to the network for training. All of above pre-processing was done by the ‘get_data’ function (and the helper 
functions it called).  

2.2   Neural Network Architecture & Performance Measure 

The study employed a standard multi-layer artificial neural network. The baseline model and the RPROP model used 
the same network architecture; the only difference between them was their optimiser (standard backpropagation vs 
RPROP). The network architecture for both the baseline and the RPROP model is summarised in Table 3 below.  
 
Table 3.  Network architecture (hyperparameters) for the baseline and RPROP models. 

 Baseline Model RPROP Model 
# of hidden layers 5 5 

Learning rate 0.05 0.05 
# of epochs 600 600 
Optimiser Standard Backpropagation RPROP 

 
For both models, the sigmoid function was used as the activation function at the hidden layers, whereas the softmax 
function was used at the output layer. 600 epochs were used for training, unless the loss reached zero beforehand, in 



which case the training would stop early. 10-fold cross validation was used to evaluate the two models. All the code can 
be found in ‘baseline.py’ and ‘rprop.py’ for the two corresponding models.  
    Additionally, to examine the effectiveness of RPROP, an experiment was set up to visualise how its performance 
would change in response to changes in the learning rate. The code for this experiment can be found in 
‘learning_rate.py’, which plots the effects of learning rate on the performances of the two models. 
    To see any of the code files mentioned above in action, simply run ‘python [filename]’ in the unzipped directory. 
(For example, use ‘python learning_rate.py’ to visualise the experiment.) 
    As an attempt to further improve the RPROP model, genetic algorithm (GA) was applied to find the best number of 
hidden neurons at each of the hidden layer. The GA model used a population size of 30, each of which was initialised 
with random numbers of hidden neurons. 500 hundred generations were applied. The crossover rate was 0.8, while the 
mutation rate was 0.01. The fitness of each individual in the population was assessed by how well the RPROP model 
can correctly diagnose breast cancer on the dataset using the number of hidden neurons specified by the individual. 
Crossover was defined as taking the average of the both parents, i.e. an individual with the DNA [500, 400, 300, 200, 
100] (500 hidden neurons in the first hidden layer, 400 hidden neurons in the second hidden layer, etc) and an 
individual with the DNA [400, 300, 200, 100, 50] will produce an offspring with the DNA [450, 350, 250, 150, 75]. 
Mutation was defined as replacing all five slots of the DNA with random numbers (shapes were assured to match). 
After the most fitted DNA (number of hidden neurons at each layer) was determined after 500 generations, 10-fold 
cross validation was used to evaluate a RPROP model using that many hidden neurons with all else being equal (same 
learning rate, same number of epochs, etc). This GA model is defined in ‘ga.py’ and can be run using ‘python ga.py’.  

3   Results and Discussion 

The result are summarised in Table 4 and Table 5 below.  
 
Table 4.  Accuracy of the baseline model, the RPROP model, and the RPROP with GA model.  

 Baseline RPROP RPROP with GA 
 Accuracy 

1st fold 57.14% 94.64% 69.64% 
2nd fold 69.64% 92.86% 91.07% 
3rd fold 60.71% 64.29% 82.14% 
4th fold 62.5% 96.43% 91.07% 
5th fold 76.79% 94.64% 96.43% 
6th fold 76.78% 96.43% 91.07% 
7th fold 73.21% 71.43% 91.07% 
8th fold 69.64% 94.64% 89.29% 
9th fold 73.21% 89.29% 87.5% 

10th fold 66.07% 96.43% 80.36% 
Average 68.57% 89.11% 86.96% 

 
Table 5. Time took for each model. (Recall that training would not use all epochs if loss reached zero beforehand) 

 Baseline RPROP RPROP with GA 
 (Time, # of epochs took) 

1st fold 7.35s,  600 epochs 4.23s,  189 epochs Getting through the 500 
generations took more than 

10 hours. 
2nd fold 7.30s,  600 epochs 4.94s,  186 epochs 
3rd fold 7.84s,  600 epochs 10.31s,  600 epochs 
4th fold 8.02s,  600 epochs 3.09s,  112 epochs 
5th fold 7.72s,  600 epochs 3.19s,  156 epochs 
6th fold 7.60s,  600 epochs 2.87s,  135 epochs 
7th fold 7.35s,  600 epochs 10.69s,  600 epochs 
8th fold 7.53s,  600 epochs 6.88s,  207 epochs 
9th fold 7.58s,  600 epochs 10.58s,  173 epochs 

10th fold 7.75s,  600 epochs 5.65s,  217 epochs 
Average 7.62s,  600 epochs 

Took less than 2 minutes total 
(training & evaluating) for the 

entire execution. 

6.24s,  257.5 epochs 
Took less than 2 minutes total 
(training & evaluating) for the 

entire execution. 
 
    As shown above, the RPROP model outperformed the baseline model in terms of both accuracy and training time. 
The accuracy for the RPROP model was about 20% higher than that of the baseline model, while taking less than half 
of the epochs on average. The genetic algorithm with 500 generations took more than 10 hours to complete, which was 
significantly longer than the other two models. Unfortunately, the performance of the RPROP with GA model did not 
surpass that of the RPROP model. The RPROP with GA model might have been able to performed better if initialised 



with a greater population and used more generations. However, doing so would also add to the time required, which 
was already greater than 300 times more than the time required for the baseline or the RPROP model. 
    Although the 89.11% accuracy might not be as impressive as the model trained by researchers at the University of 
Wisconsin that reached “100% chronological correctness in diagnosing 131 subsequent patients” [4], the RPROP model 
was a significant upgrade over the baseline model in terms of both training time and accuracy. With the same network 
architecture, the RPROP model outperformed the baseline model with standard backpropagation. This was likely due to 
the fact that RPROP’s performance is generally less dependent on the size of the partial derivatives as discussed in the 
‘Introduction’ section. This result is consistent with other studies in the field which also found RPROP to outperform 
standard backpropagation [13] [14].  
    Furthermore, RPROP’s performance did not seem to depend much on the choice of learning rate like standard 
backpropagation as suggested by the result of the learning rate experiment (summarised in Fig. 1). RPROP was able to 
achieve an accuracy above 90% with low learning rate when standard backpropagation got about 50% accuracy. This 
was possible because of RPROP’s adaptive weight update as explained in the ‘Introduction’ section.  

 
Fig. 1. Result of the learning rate experiment. Different from standard backpropagation whose performance depends largely on the 
choice of the learning rate, RPROP managed to maintain a relatively high level of accuracy on the test set for most learning rates. 
This graph can be generated by running ‘python learning_rate.py’ in the unzipped directory.  

    Overall, the RPROP model outperformed the baseline model with standard backpropagation in terms of both training 
time and accuracy as due to its adaptive nature.   

4   Conclusion and Future Work 

In the end, the neural network was able to cut the number training epochs required by more than half and increase its 
accuracy by about 20% with the adoption of RPROP. This, however, does not suggest RPROP is perfect and should be 
applied to every network. Like all methods, RPROP has its limitations. This was evident in the far right of the Fig. 1 
above which showed that at some learning rates, the standard backpropagation outperformed RPROP. As pointed out by 
other researches already, RPROP’s “restricted local adaptation scheme inherently lacks the overall view that global 
techniques may have” and therefore can underperform compared to standard backpropagation and other methods in 
certain circumstances [9]. Hence, it remains to be seen how RPROP can be improved in future research.  
    With better computational power, the GA model can be experimented further more easily. Increasing the number of 
population size and the number of generations both are likely to contribute to a better performance. Other 
hyperparameters, such as the number of hidden layers or the learning rate, can also be explored with GA.  
    As to improving the accuracy of diagnosing breast cancer, several directions other than GA can be considered for 
future work. One approach will be improving through data. Improvements may be possible through rescaling data, 
getting more data, or better feature selection. Another approach will be applying algorithms other than backpropagation 
and RPROP to see if improvements can be made. Finally, the other approach is to adjust the network architecture by 
tuning the number of hidden layers, the number of neurons, the learning rate, activation functions, etc. Overall, it would 
be great if one can find an algorithm that addresses the limitations of RPROP as such an algorithm can be applied to all 
datasets as opposed to the other two approaches whose effect may be limited to this particular dataset.  
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