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Abstract. This report introduced the comparison between Auto-Encoder with Artificial Neural Network (ANN) and 
Convolution Neural Network (CNN) both using the Semeion Hand-written Digit Data Set. Both Auto-Encode plus 
ANN and CNN are implemented for classification of data set on Python and Pytorch. The Semeion Hand-written Digit 
Data Set records the various hand-written data referenced from UCI Machine Learning Repository. Finally, the report 
provides some discussion based on the comparison of two neural network structures 
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1 Introduction 

As one the major machine learning package in Python, Pytorch is used to implement the establishment of the structures 
for Auto-Encoder, Artificial Neural Network (ANN) and Convolution Neural Network (CNN). Pytorch applies some 
acceleration libraries like Intel MKL or NVIDA (CuDNN, NCCL) which can enhance the running of the neural networks 
(Pytorch, 2017). The used data set is Semeion hand-written digits dataset referenced from UCI Machines Learning 
Repository which contains 1593 instances with 256-dimension binary values (Semeion Research Center of Sciences of 
Communication, 2008). It will be introduced in detail in Methods part. Both Auto-Encoder and CNN are built depending 
on the ANN inspired and researched by the biological human brain structure (Zankinski, Barova, & Tomov, 2017). The   
regular ANN contains the input layer, the hidden layer and output layer, which functions are input information, processing 
information and return the result (Logan, 2017). Auto-encoder as a method of feature extraction of the data can be applied 
to improve the code performance (Cohen, 2017) and CNN can process images such as classification or recognition and 
provides the partial invariance for some operations including translation, rotation and more (Lawrence, Giles, Tsoi, & 
Back, 1997). The comparison of two methods will be discussion in later. 

 

2 Methods 

2.1 Motivation  

The targets of implementation, especially to applying this data set, are to recognise the handwritten digital result 
automatically and accurately through the classification completed by machines. It need to apply the machine learning 
methods, such as ANN or Deep learning algorithms. Actually, the implementation of algorithms can be applied to reduce 
the working cost of the handwritten materials manually such as the electronical recording of hand-written materials or the 
recognition of the ancient materials. In addition, Auto-Encoder can be applied to extract the features and CNN is one of 
suitable image processing method. Thus, it is meaningful to compare and discuss two methods. 

2.2 Dataset 

Semeion hand-written digits dataset, which is found and references from UCI Machine Learning Repository, contains 
1593 pieces of recording and each instance is made up by a 256-dimension binary vector with a 10-dimension label. 
Actually, the original handwritten digit images were scanned from about 80 people and each person wrote down the digit 
twice from 0 to 9 on the paper; the scanning result was recorded by resizing to 16x16 and transferred first to the grayscale-



type images, of which all pixel channel are 1 and values are float between 0 to 1; then the grayscale image matrix was 
converted to the binary matrixes that only contains 0 or 1 value by applying a single threshold; finally, all recorded images 
matrixes were reshaped form 16x16 to 256-dimension vectors and recording instances were generated by both data vectors 
and labels (Semeion Research Center of Sciences of Communication, 2008).  
 
All labels recording in data set are represented by a 10-dimension binary vector. The label binary vector only contains 
one 1 value and other values are all 0. Thus, in this allocation, the position of value 1 is representing the actual value of 
the label. For example, if a label of a single instance is [0	1	0	0	0	0	0	0	0	0], it means that the original image converted 
to the data of this instance should show a digit 1.  
 
The reason why this data set was selected was that the dimension of the data in this set is big enough which can be applied 
the data compression algorithms to save the running space. Correspondingly, some problem for the application of this 
data set will be discussed in the later section. 

2.3 Data file type conversion and reading 

The data file downloaded from UCI ML repository is the .data type and all the data was separated by blank space rather 
than comma. It means that the data can be only read normally through the line-by-line method, if the file type is not 
changed. It is less convenient than using pandas reading csv file because reading line-by-line need to combine the data 
into a matrix but reading csv file by pandas can generate and return a matrix directly. Thus, the black spaces between data 
values in the original file are replaced by commas which can help to separate data when the file type is converted to csv. 
After the conversion of the data file type, the data can be read directly by the in-built function provided by pandas package 
in Python and the function will return a matrix recording all data values and label values. Additionally, all the data type 
is transformed from float to integer which can be helpful for memory management. 

2.4 Data set pre-process 

Comparing with other handwritten datasets, Semeion hand-written digit dataset has completed some data pre-processing 
such as compressing data by resizing of the original images, changing images from three channels such as RGB, HVC or 
other types to only one channel (grayscale even binary type) or converting the matrix to vector by reshaping. However, 
some pre-processing operations containing label encoding, data reshaping, data compression, data loading and batching 
separation, still need to be applied to prove the classification is able to complete. 

2.4.1 Label Encoding 

As pervious description, the label of the data set is a 10-dimension vector. It means that it cannot be compared by the 
prediction result directly under ANN linear prediction. Therefore, before loading and using data in training or testing 
process, the label vectors has been encoded manually to their actual meaning digit, for example, encoding the vector 
[1	0		0	0	0	0	0	0	0	0] as digit 0, [0	1	0	0	0	0	0	0	0	0] as digit 1 and [0		0	1	0	0	0	0	0	0	0] as digit 2. 

2.4.2 Data Reshaping 

An instance of data reading from dataset a 256-dimension which is convenient to process for ANN especially its hidden 
layer is linear structure. However, it has some problems because the convolution layers and pooling layers cannot be 
applied on the vectors. Thus, the vector of each instance data should be reshaped back to 16-by-16 matrix from 256-
dimension and a loop can be used to finish this process. 

2.4.3 Data compression 

In this report, two methods, Auto-Encoders and CNN, are implemented and introduced latter. 

2.4.4 Data loading and batch separating 

In the data training and testing of ANN, data can be called directly just after processing by some in-built functions. 
However, the loading data directly would cause the type errors especially the data value has been converted to the matrix 
with 16-by-16 size. Thus, the costume dataset class inherited from the dataset class and data loader of Data of Pytorch 
should be applied which can avoid the problems of types in training and testing, especially for the calculation of the loss 
functions. The costume dataset class should be rebuilt the functions init() which initializes the parameters of an class 
object, getitem() which return the a data-label pair by provided index and len() which returen the length of the dataset. In 



 

initialization function, the data set loaded is separated to data part and label part and the data part need to conduct data 
reshaping processing introduced in pervious part before storing. After the generation of the datasets for both training and 
testing, the training data set was sent into Pytorch data loader for training. In addition, the data loader can separate 
automatically dataset by setting batch size. 

2.5 Artificial Neural Network 

ANN used in this working has the standard three-layer neural network which contains an input layer, a hidden layer and 
an output layer. The number of nodes in output layer are setting to ten based on the requirement of Pytorch, otherwise it 
would produce the runtime error in calculating loss function. The actual prediction with a single label value is selected 
from the output values. The number of nodes in hidden layer is based on the setting manually but if it is too large, the 
computing time and needed memory will also rise up so much, although the prediction may also increase. It means that 
high number hidden nodes will increase both accuracy and time and space complexity. The number of nodes in input 
layer is based on the input data because this number should be same with the dimension of the input data at least. In this 
data set, if no any application of dimension reducing technique, the number of input nodes should be 256 which is same 
with dimension of the data vector. The ANN is defined as a class and it need be initial by the node number of three 
layers. The hidden layer and output layer are both linear layer defined in the initial function and the activation function 
is defined with the sigmoid function, which will be applied to process the hidden layer input data to get the output data 
in the normal forward order. In addition,  the loss is calculated by cross entropy loss method, which is similar to 
calculate the negative log likelihood (DiPietro, 2016) and stochastic gradient descent (SGD) is used for training process, 
which can update the parameter by decline the gradient (Christopher, 2016). For each batch, the gradient will be 
cleared, and the backward propagation will be applied to adjust the model parameters. Additionally, the setting of ANN 
part is same for both application in Auto-Encoder and CNN. 

2.6 Auto-Encoder 

The Auto-Encoder which is a technique from the paper Stochastic bidirectional training in the week 7 Compression part 
(Gedeon, 1998)  is applied to extract the features and reduce input data although it cannot reduce the dimension of data 
and need the external running time and space. Auto-encoder neural network is an unsupervised learning algorithm 
(UFLDL Tutorial, n.d.) . The encoder and decoder which are the major feature extracting steps in Auto-Encoder are 
defined with the linear model. Through the encoder, the major valuable features with the target size is kept, then the 
decoder recovers the dimension of the input data. Although the dimension of data is not changed, the features which can 
affect the performance of the training model are extracted and reduce the difficulty of training. For example, the 
assumption is that the input data is ten-dimensional and the data in 3rd dimension is extracted out as the only one feature, 
in the training process of later classification, the linear classification model will be adjusted to which the parameters of 
3rd dimension can affect the training result more. Actually, the feature extracting process is an external learning of which 
parameters are not related to the classification of the ANN. It means that the whole classification need twice training and 
test to get the prediction. The loss function of the implementation in auto-encoder training is the mean square error loss. 
Additionally, batch separating, SGD and backward propagation are also applied in the training process to get a better 
performance for model. The structure of Auto-Encoder is showing in Fig. 1. 

 
Fig. 1. Auto-Encoder Structure  (Dertat, 2017) 

 



2.7 Convolution Neural Network 

Convolution Neural Network is a deep learning algorithm which can help machine to learn the processing of images and 
keep the partial invariance for some operations including translation, rotation and more (Lawrence, Giles, Tsoi, & Back, 
1997). The regular structure of CNN consists of the convolution layer(s), the corresponding ReLU layer(s), which is a 
kind of activation functions, and pooling layers, and a full connection ANN. In the convolution layer, the image matrix 
is processed with the convolution calculation between the kernel matrix and same size area in image matrix step by step, 
that is related to the setting of the filter movement. Then the calculation results will be processed by ReLU layers and 
extracted the features by Pooling layers. After that, the data processed will be sent into the later full connection ANN. 
Thus, both dimension reduction and feature extraction for the input data can be implemented after the processing of the 
convolution layers, ReLU layers and pooling layers. The regular classification of CNN only contains once training and 
test. Similarly, the CNN is implemented by a class and the initialization function set the parameters for both convolution-
pooling layers and full connection ANN based on the neural network model provided by Pytorch. The setting of full 
connection ANN has been introduced before. 

3 Results and Discussion 

3.1 Fixed parameters 

Some parameters are set fixed for both CNN and Auto Encoder, for instance, the batch size is 50 temporarily and all 
pooling layers are average pooling layer with the kernel size = 2. Although the pool layer can also be setting to maximum 
pooling layer, it will not affect the comparison seriously. Both the full connection ANN whether in CNN or Auto-Encoder 
has 20 nodes in hidden layers and 10 nodes in output layers under the 500 epochs. 

3.2 Results of CNN 

The parameters of CNN are setting differently for comparison of CNN result. First result showing in Table 1. is based on 
the one convolution-pooling layer CNN which consists of a single convolution layer with kernel size = 16, a ReLU layer 
and a single corresponding pooling layer under the learning rate 0.01. It causes that the size of input nodes of ANN is 
784. The second result showing in Table 2. is similar but based on the two convolution-pooling layers. Its kernel size of 
first convolution layer is 16 and second one is 32 thus the size of input nodes is 128. It can be observed from the result 
tables that the application of CNN can generate a satisfactory result and reduce the dimension of input data with more 
than one convolution-pooling layers, but it will also cost more running time. 

 
 

Table 1.  Result of CNN with 1 convolution-pooling layer 

Learning rate 0.01 

Accuracy 99.54% 97.25% 99.03% 

Running time (s) 54.568 54.346 52.9502 

 

Table 2. Result of CNN with 2 convolution-pooling layers 

Learning 
rate 0.01 0.02 

Accuracy 89.59% 98.25% 90.59% 96.18% 96.44% 97.94% 

Running 
time (s) 88.782 88.754 90.492 117.085 91.706 92.083 



 

3.3 Result of Auto-Encoder 

The Auto-Encoder is trained with its own neural network with the code size 100, batch size 50, epoch number 2000 and 
learning rate 0.02. The result is recording in Table 3 with the different learning rate of ANN. After the application of 
feature extraction of data, it can produce an acceptable result with much external time.  

Table 3. Result of Auto-Encoder 

Learning 
rate 0.01 0.02 

Accuracy 92.12% 89.47% 93.88% 93.98% 95.11% 94.19% 

Running 
time (s) 117.060 121.839 115.474 118.977 116.729 162.497 

3.4 Comparison of results of CNN and Auto-Encoder 

The comparison is between the CNN with two convolution-pooling layer and Auto-Encoder in average of pervious result. 
The result is recording in Table 4 under the condition of controlling variable same. It is obvious that in total, the 
performance under learning rate 0.02 is better than learning rate 0.01 whether CNN or Auto-Encoder because of higher 
accuracy but it also cost more time. However, the enhancing of CNN is more significant than Auto-Encoder, but the time 
cost of CNN is also increasing more. In addition, CNN performs better than Auto-Encoder whether in the accuracy or the 
cost of code running time. 

Table 4. Result of Comparison 

Learning rate 0.01 0.02 

Type CNN Auto-Encoder CNN Auto-Encoder 

Average Accuracy 92.81% 91.82% 96.85% 94.43% 

Average Running 
time (s) 89.343 118.124 100.291 132.734 

3.5 Discussion of comparison 

Compared with Auto-Encoder, CNN performs better whether in time saving or prediction accuracy increasing. However, 
both results are based on the original dataset which has been pre-processed before the its generation. Actually, the results 
of prediction by ANN directly, which is showing in Table 5, are so much better than the performances of both CNN and 
Auto-Encoder because it only has binary data value. Although CNN with 1 convolution-pooling layer provided a similar 
performance on prediction accuracy, it cost much more time than the classification of ANN directly. 

4 Conclusion and Future Work 

4.1 Conclusion 

In total, both CNN and Auto-Encoders can be applied for the reduce the measure of the input data size. However, CNN 
performs overall better than Auto-Encoders whether on accuracy or time cost.  

4.2 Future Work 

Actually, in the exploring process, when the Auto-Encoder with same codes was applied on some other hand-written 
datasets which is not special with Semeion hand-written digit dataset, the result performed terrible because the loss in 
Auto-Encoder training process was showing as nan which means too large. Similarly, the CNN also shows its unstable 
ability in the classification of MNIST data set. Therefore, the future work may be developed on the experiments for the 



CNN and Auto-Encoder running on other hand-written datasets which are more general than Semeion hand-written 
dataset or include letters with some necessary pre-processing. 
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