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Abstract. Neural networks are widely applied in the multi-class image classification problem. However, the noisy data 
and redundant features existing in the data set may result in learning problem and hence influence the performance of 
the neural network. Bimodal Distribution Removal (BDR) aims at cleaning up noisy training data set and hence 
improving generalisation. In addition, genetic algorithm (GA) could generate the optimal feature subset and eliminate 
the redundant features. This paper applies BDR and GA-based feature selection to a back-forward neural network 
designed for multi-class image classification problem respectively. The classification accuracy of the original network 
could reach 81.2% and the two improved models could achieve 85.5% and 84.9%. The evaluation and comparison 
conducted in this paper demonstrate both the effectiveness and usefulness of the two improved models. 
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1 Introduction 

Image classification, which refers to the process of categorizing images into different classes, is a significant computer 
vision area. Image classification is the fundamental task for image detection, image segmentation and other computer 
vision applications (Murugeswari & Suruliandi, 2016). Although this task seems simple and natural for humans, it is a 
challenging problem for an automatic system. This paper designs a feedforward neural network to solve multi-class image 
classification problem. However, on one hand, such a neural network as a non-parameter estimator may be very sensitive 
to the noise in the training data. Bimodal Distribution Removal (BDR) was proposed to reduce the noisy data in the 
training set and was applied for a regression problem (Slade & Gedeon, 1993). This algorithm outperformed Absolute 
Sriterion Method and Least Median Squares (Joines & White, 1992). Therefore, BDR is applied in this paper to improve 
the performance of the model. On the other hand, the irrelevant features existing in the data set would also negatively 
affect the classification. Li (2006) integrated the genetic algorithm (GA) with feature selection which outperformed 
floating search methods (Pudil, Novovičová & Kittler, 1994) and filter model (John, Kohavi & Pfleger, 1994). Thus, this 
paper applies GA-based feature selection to enhance the classification performance of the original network. 

Statlog (Vehicle Silhouettes) data set (Siebert, 1987) is used to train and test the models proposed in this paper. This 
data set consists of 846 instances and 18 features. The number of instances and features is large enough to train and test 
a neural network. The features are extracted from the original images and most required information for classification are 
maintained. However, the extraction process cannot be perfectly accurate. Thus, the data set would contain noisy data 
and it is suitable for testing the influence of noisy data to the model introduced in this paper. In addition, some features 
of this data set seem redundant. For example, both compactness and circularity are the measurement of the area size from 
different perspectives. Hence, this data set is suited for experiments on the feature selection methods. 

Given the data set, the classification problem can be described as to categorize data into 4 classes based on 18 features. 
I design a feedforward neural network and obtain two improved models by applying BDR and GA-based feature selection 
respectively. Then, I utilize precision, recall and F1 score to evaluate the original and two improved neural networks. 
Furthermore, I also compare the improved neural networks with other designed neural networks for the classification 
problem on the same data set. The evaluation and comparison results demonstrate the effectiveness of the BDR and GA-
based feature selection in improving neural network performance. 



2 Method 

2.1 Data Pre-processing 

The input attributes of the data set are integers and have different ranges. For example, the radius ratio ranges from 104 
to 333 while the max length aspect ratio only ranges from 2 to 55. I use z-score to normalize the input attributes. The z-
score of each raw value can be calculated as 
                                                                                             𝑧 = #$	&

'
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where µ and σ are the mean and standard deviation of all values of the attribute. The normalization could ensure all values 
have the same range and remove bias of lowest and highest values. Besides, I use decimal values to encode the original 
string representation of the class labels. That is, the four labels (VAN, SAAB, BUS and OPEL) are encoded as 0 to 3, 
respectively. Then, I randomly divide the data set into 10 pieces to validate the proposed models in this paper using 10-
fold cross-validation. The details of validation would be discussed in Section 3.1. 

2.2 Neural Network Design 

After preprocessing the data set, I design the feedforward neural network trained using back-propagation. This process 
includes the choices of neural network layer, activation function, loss function and optimizer. 

2.2.1 Neural Network Layer 

There are 18 input neurons corresponding to the 18 input attributes and 4 output neurons corresponding to the 4 predefined 
classes. I design a two-layer network and a three-layer network for comparison. The two-layer network contains 18 
neurons in the hidden layer and the three-layer network contains 20 and 10 neurons in two hidden layers. According to 
observations on the training results, there do not exist significant differences of both the training speed and validation 
accuracy. However, the two-layer network is more stable because it has less fluctuation of the validation accuracy. Thus, 
I choose the two-layer network. 

2.2.2 Activation Function 

For each hidden neuron, I use a Rectified Linear Unit (ReLU) as activation function. The function can be described as 

                                                                             f (x) = max (x, 0)                                                                          (2) 

If the input is less than 0, a ReLU will output 0; otherwise, it will output the same as the input. Compared with sigmoid 
function, the ReLU can reduce the likelihood of the gradient to vanish. Research demonstrates that ReLU activations 
could increase training speed especially for large networks (Krizhevsk, Sutskever & Hinton, 2012). According to 
experiments, I find the ReLU could not only decrease the required training time but also increase the validation accuracy. 
Therefore, I choose the ReLU as the activation function for hidden neurons. 
     As for output neurons, I use softmax function as the activation function. The mathematic expression of softmax is 
shown below, z is the input vector to the output layer, K is the number of dimensions of the vector,  j is the index of each 
dimension of z. 
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The softmax function calculates a probability distribution over the K dimensions. In the multi-class classification problem, 
softmax function could convert the output scores of the hidden neurons to the probabilities of classes given the input 
pattern. The class with the highest probability would be predicted as the category of the input pattern. 

2.2.3 Loss Function 

For each training epoch, it is required a loss function to measure the error between the predictions of the neural network 
and the pre-labelled classes. I use the Cross Entropy Loss Function, by which the error is calculated as the average over 
all losses. Given a prediction x and a label class, the loss is: 

                                                         𝑙𝑜𝑠𝑠(𝑥, 𝑐𝑙𝑎𝑠𝑠) =	− 𝑙𝑜𝑔<=#>(#[@ABCC])∑ =#>(#[E])F
G = 	−𝑥[𝑐𝑙𝑎𝑠𝑠] +	𝑙𝑜𝑔I∑ 𝑒𝑥𝑝(𝑥[𝑗])E M			                                     (4) 

In the multi-class classification, the output layer would produce probability distributions and I expect the correct class 
could have the highest probability. As the above expression (4) shows, the Cross Entropy could mainly focus on how 
much probability is assigned to the correct class. Hence, Cross Entropy Loss Function is a good measure for the error in 
the classification problem. 



2.2.4 Optimizer 

As Section 2.2.3 explains, the loss function can be considered as the difference between the neural network and the 
expected results. Optimizers are used to optimize the value weights of neural network and hence to minimize the losses. 
I test different momentums with the Stochastic Gradient Descent (SGD) optimizer proposed by Sutskever, Martens, Dahl 
and Hinton (2013) and the Adam optimizer designed by Kingma and Ba (2014). Fig. 1 shows the decrease of loss over 
steps during training with different optimizers. Adam optimizer requires less training time to achieve same results than 
SGD optimizer with setting momentum to 0 and 0.9. Furthermore, I find the validation accuracy of Adam optimizer also 
is higher than the other two optimizers. Based on the observations, the Adam optimizer is used in the feedforward neural 
network. 

 
Fig. 1. Comparison of optimizers. 

2.3 Bimodal Distribution Removal 

Similar to the bias-variance decomposition of regression problem (Gedeon, Wong & Harris, 1995), the error of 
classification problem can also be decomposed into bias and variance (Le Borgne, 2005). Simply speaking, bias is the 
error comes from erroneous assumptions and variance is the error derives from sensitivity to input. A typical issue results 
from the variance is that the neural network may spend plenty of time training on noisy data and converge to incorrect 
results. Bimodal Distribution Removal algorithm proposed by Slade and Gedeon (1993) is used to reduce noise and 
therefore the variance of training data set for regression problem. Based on the above analysis, I find classification 
problem have the same issue and hence apply Bimodal Distribution Removal to the designed neural network. 

As introduced in Section 2.2.3, Cross Entropy is a good measure for the error of classification problem. I use the Cross 
Entropy to calculate the error instead of the mean square error which is suited for regression problem. The error 
distribution before training demonstrates the large variance of errors. However, after only 200 epochs, the neural network 
dramatically reduces the errors. The error distribution is bimodal, which means that the neural network has learnt the 
patterns of the low peak well while the patterns of the high peak are outliers.  

Bimodal distribution removal begins with training on the entire training data set. After 200 training epochs, if the 
normalization variance of errors over the whole training data set 𝑣OC is less than 0.1, the neural network would have 
reached the bimodal error distribution and patterns can be removed. Extract the patterns whose errors are greater than the 
mean error 𝛿O̅C for all patterns to form a subset. Calculate the mean error 𝛿C̅C and the standard deviation 𝜎CC of the subset. 
Within the subset, remove the patterns whose errors are greater than  𝛿C̅C + 	𝛼𝜎CC from the training set, where α is a 
customized parameter based on the training data set and its range is from 0 to 1. After each removal, the neural network 
need to train on the new training data set for 50 epochs. Repeat removal and training until the normalization variance of 
errors over the whole training data set 𝑣OC is below 0.01. The choices of the customized parameter α and the threshold for 
the normalized variances depend on the choice of data set.  

2.4 GA-Based Feature Selection 

The irrelevant and redundant features in the data set might unduly complicate the learning task and therefore negatively 
influence the performance of the neural network. Yang and Honavar (1998) demonstrate that the choice of features could 
affect several classification aspects, including the time needed for learning from the training data, the classification 
accuracy and the number of instances required for learning. Research shows the ability of genetic algorithm to obtain the 



optimal feature subset and hence enhance the performance of neural network (Sharma & Gedeon, 2013). Thus, I apply 
GA-based feature selection to the original designed network and the procedure is explained as follows.  

2.4.1 Define Chromosome Representation and Initialize Population 

In GA-based feature selection, a chromosome represents a feature subset. Fig 2 illustrates the binary representation of the 
chromosome. F1 to F18 are the 18 input features and the corresponding binary value indicates whether the feature is 
selected. For example, “0” of F2 indicates F2 is not in the feature subset while “1” of F5 indicates F5 is in the feature 
subset. 
 

F1 F2 F3 F4 F5 … F18 
1 0 0 0 1 … 1 

Fig. 2. Chromosome binary representation example. 

At the beginning, each gene of each chromosome is assigned a random value from the allowed domain (0 and 1 for 
binary representation) to form the initial population. The goal of random assignment is to ensure that the initial population 
is a uniform representation of the whole search space. The choice of the size of the population depends on the problem. 

2.4.2 Evaluate Fitness Values  

The fitness value of each chromosome in the population determines the quality of the candidate feature subset. In GA-
based feature selection, classification accuracy and the number of selected features are the two criteria used to design a 
fitness function. The fitness value can be calculated as 
 
                                                                      𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + 	𝛼 × 	 ]̂

]_
                                                                     (5) 

 
where 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 is the classification accuracy, 𝐹O is the total number of features, 𝐹C is the number of subset features and 
α is a tuned parameter to compromise between maximizing classification accuracy and minimizing the number of features 
in the subset. 

In the classification problem, every chromosome in the population is used as the input features for the original neural 
network designed in Section 2.2. The number of input neurons should be modified corresponding to the feature number 
of the subset and the rest of the network remains the same. Classification accuracy is obtained by training and testing on 
the new model. Then, each chromosome could be evaluated by the aforementioned fitness function. 

2.4.3 Apply Crossover and Mutation to Population 

According to the fitness values of chromosomes, crossover is applied to population to reproduce new population. I use 
proportional selection to select the parents for crossover. That is, the chromosome with higher fitness value has higher 
chance to be selected as the parent. Then I utilize uniform crossover to attempt to combine the good genes in the parents. 
As Fig. 3 shows, the offspring is produced by combining the two parents using the randomly created mask.  
 

 
Fig. 3. Uniform crossover. 

In addition to crossover, I apply random mutation to introduce new genetic material into the population and hence 
increase genetic diversity. Mutation is applied at a certain probability to each gene of the offspring produced by crossover. 
The aim of setting the probability, also referred to as the mutation rate, is to ensure that good chromosomes are not 
distorted too much. The choice of the mutation rate is problem-dependent. 



2.4.4 Select Chromosomes and Terminate Evolution 

After applying crossover and mutation to produce new population, I use the fitness function explained in Section 2.4.2 to 
evaluate fitness values for each new chromosome in the new population. Based on the fitness values, proportional 
selection is applied to select chromosomes that will proceed to next generation. In other words, the chromosome with 
higher fitness value has higher probability to survive to next generation. 

Furthermore, I set two termination criteria of the evolution. One is reaching the limit of 1000 generations. Another is 
that search is converged where no improvement is observed over the last 10 consecutive generations. Repeat Section 2.4.3 
and Section 2.4.4 until any of the two termination conditions is satisfied. 

3 Results and Discussion 

3.1 Evaluation Method 

Precision, recall and F1 score are common evaluation metrics for classification problem. Precision is a ratio of positive 
predictions to the total number of positive class values predicted and hence could indicate how often the model is correct. 
Recall is a ratio of positive predictions to the number of positive class values in the test data and therefore could reflect 
the effectiveness of a model to identify class labels. The two evaluations could gauge the performance of the neural 
network from different perspectives. F1 score is the harmonic mean of precision and recall. If either precision and recall 
is low, the F1 score will be low. Hence, I use the three evaluation metrics to measure the performance of the neural 
network. The three evaluation values could be easily calculated from the confusion matrix. 

In addition, 10-fold cross validation is used to validate models. As Section 2.1 introduces, the data set is randomly 
divided into 10 pieces. I treat one of the pieces as the test data and fit the model to the other nine-tenths of the data. Then, 
apply the model to the test data and calculate the aforementioned three evaluation values. Repeat this procedure for all 10 
pieces of the data and average the evaluation values derived in all ten cases of cross validation. 10-fold cross validation 
has many advantages. First, 10-fold cross validation could check whether the model is overfitting. If the performance 
metrics at each of the 10 times are close to each other that could prove the model is not overfitting. Second, the influence 
caused by the randomness of the initial weight values for the neural network could be reduced. Finally, 10-fold cross 
validation could diminish the possible negative effect derived from splitting training and test data. 

3.2 Evaluation of the Original Network 

As explained in Section 3.1, I utilize 10-fold cross validation to assess the performance of the designed neural network. 
The variance of the evaluation results for 10 folds is low, which proves the model does not overfit. Table 1 shows the 
average evaluation results of the designed neural network over the ten folds. All of the three average evaluation values 
are above 0.8. High precision proves the correct prediction ability of the neural network while high recall reflects the 
effectiveness of the neural network. Hence, these evaluation results demonstrate that this neural network performs well 
in this classification problem. However, the evaluation values of some classes are relatively lower such as class 1 and 
class 3. This may result from the presence of noisy data and redundant features in the data set. 

Table 1.  Evaluation of the original network. 

 

3.3 Evaluation of Bimodal Distribution Removal 

Similar to the evaluation of the original network, 10-fold cross validation is used and low variance of evaluation values 
for 10 folds demonstrates the model is not overfitting. Table 2 shows the average evaluation results of the neural network 
combined with Bimodal Distribution Removal. Compared with table 1, the evaluation values of most classes have 
increased and hence the overall performance has improved. This improvement reflects the positive influence of the 
application of bimodal distribution removal to the original neural network.  



Table 2. Evaluation of bimodal distribution removal.                                         

 
 

Besides, the average normalized variance of prediction errors of the original training data set is 0.82 while the variance 
of the data set after Bimodal Distribution Removal is only 0.008. The Bimodal Distribution Removal could remove the 
noisy data in the training set hence reduce the variance of the training set. The performance of the improved neural 
network shows the positive effect of Bimodal Distribution Removal on cleaning training data set and improving 
performance of neural networks. However, the average size of training data set after Bimodal Distribution Removal is 
746 while the original size is 762. Only a small part of the training data has been removed which indicates the original 
training data set does not contain too much noise. Because the performance of Bimodal Distribution Removal is largely 
influenced by the choice of the data set, this algorithm might perform better on other nosier data set. 

3.4 Evaluation of GA-Based Feature Selection 

Similar with the evaluation explained before, I use 10-fold cross validation and experiment results prove the model with 
GA-based feature selection is does not overfit. Table 3 summarizes the average evaluation values over the 10 folds. As 
Table 3 shows, evaluation values of major classes are higher and therefore the average performance is better compared 
to Table 1. In addition, the size of the feature set decreases from 18 to 15. The decrease of feature numbers and increase 
of evaluation results demonstrate the ability of GA-based feature selection to eliminate redundant features and improve 
the original neural network. Furthermore, I conduct the experiment 3 times and I find two features would always be 
removed. Thus, these two features could be considered as noisy features. However, there are always only 3 features 
removed from the initial set. This means the original feature set does not consist of too many irrelevant and redundant 
features. 

Table 3. Evaluation of GA-based feature selection.                                         

 
 

According to Table 3 and Table 2, there are no significant differences in the evaluation values between Bimodal 
Distribution Removal and GA-based feature selection. Because the two methods attempt to improve the model by 
processing the data set from different perspectives, it is not reasonable to conclude which method is better. 

3.5 Comparison with Other Networks 

Parekh, Yang and Honavar (2000) also solve the classification problem on the same data set through a basic neural 
network and two constructive networks using MPyramid-real algorithm and MTiling-real algorithm respectively. These 
three neural networks are used as baseline to evaluate the proposed models by this paper. Parekh, Yang and Honavar 
(2000) utilize test accuracy as the evaluation metric. Table 4 shows the comparisons of feature number, hidden neuron 
number and test accuracy among the three baseline networks and the two improved models. The test accuracy of the two 
improved models are higher than the baseline. These results show that the two improved models outperform the others. 
This may result from four reasons. First, the basic neural network does not use enough hidden neurons to learn from the 
training. Second, the model constructed by MPyramid-real algorithm contains too many hidden neurons and hence is 
overfitting. Third, the improved network by Bimodal Distribution Removal could lessen the noise in the training data and 
enhance the performance of the neural network. Finally, the model after GA-based feature selection removes redundant 
features that unduly complicate the learning task and hence improves the performance. 

Table 4. Comparison of neural networks 

 



4 Conclusion and Future Work 

The application of Bimodal Distribution Removal and GA-based feature selection in feedforward neural network could 
improve the performance in solving multi-class image classification problem. The evaluation and comparison demonstrate 
that Bimodal Distribution Removal is a feasible method to reduce noise and hence the variance of training data. The 
evaluation and comparison also prove that genetic algorithm is able to eliminate redundant features and therefore to 
improve the classification performance. 

Future work could be carried out towards four directions. First, Bimodal Distribution could be used on some nosier 
data set to further evaluate the effectiveness. The second is applying Bimodal Distribution Removal to other type of 
classifiers that may encounter bias-variance tradeoff such as support vector machines. Third, some other data set 
containing more irrelevant features can be utilized to evaluate the improvement by GA-based feature selection. Finally, 
genetic algorithm could be applied to determine not only the optimal feature subset but also the optimal neural network 
structure such as the number of hidden neurons. 
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