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Abstract. This data set includes 20000 data and the feature of these data were 

summarized 16 different numerical attributes, and different combination of these 16 

attributes can represent different English capital letters, and my training model can 

predicate the letters by the 16 different numerical attributes.  This time, I used the asme 

data set and tried using a deep learning approach, constructing a DNN model to predict 

the target attribute. Also, I used some methods, including data normalization, random 

sampling or some other data preprocessing approaches, setting different parameters of 

DNN model like the number of hidden layer neuron, to make my model as much 

accuracy as possible. And this time the accuracy of my model arrived at 84.5%, better 

than the results got by Pavlov, Popescul, Pennock and Ungar (2003).  
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1   Introduction 

This time, I chose the same data set as last time, from the UCI Machine Learning 

Repository located at http://archive.ics.uci.edu/ml/datasets.html, and this data set is 

called Letter recognition. As we all known, with the development of modern science 

and technology, data statistics and analysis techniques have been widely applied to 

various fields.  According to Paliouras and S.Bree(2005), quantities of empircM 

concept learning algo-rithms have been improved since two decades ago. Also, when 

human experts faced with difficult situation, they always can treat these problems as 

special cases of familiar examples by classifying and analyzing them and then apply 

known solutions to work it out (de Groot, Chase & Simon, cited in W.Fery, J.Slate, 

1991). As a result, I planned to find a suitable data set to check the effect of using digital 

features in the training set, which could help me realize the power of analytics in some 

degree. Finally, the data set I chose is called ‘Letter Recognition Data Set’, has 20000 

characters which were produced by 20 randomly distorted and different fonts. And these 

20 fonts could make up different character images and each of them would be identified 

as one of 26 English capital letters. During the whole process, I constructed a DNN 

http://archive.ics.uci.edu/ml/datasets.html


model to predict the target value through other 16 attributes. And I used randomly 

sampling and some data preprocessing methods to get a better and reliable model. 

2 Method 

1) Change the column name and convert string target values to numeric values firstly. 

I will show the attribute information of this datset.  

Letter  capital letter  (string)  

x-box  horizontal position of box  (integer)  

y-box  vertical position of box  (integer)  

width  width of box  (integer)  

high  height of box  (integer)  

onpix  total # on pixels  (integer)  

x-bar  mean x of on pixels in 

box  

(integer)  

y-bar  mean y of on pixels in 

box  

(integer)  

x2bar  mean x variance  (integer)  

y2bar  mean y variance  (integer)  

xybar  mean x y correlation  (integer)  

x2ybr  mean of x * x * y  (integer)  

xy2br  mean of x * y * y  (integer)  

x-ege  mean edge count left to 

right  

(integer)  

xegvy  correlation of x-ege with 

y  

(integer)  

y-ege  mean edge count bottom 

to top  

(integer)  

yegvx  correlation of y-ege with 

x  

(integer)  

According this form, the type of target values is string, I should convert them to 

numeric values at first. 

2) Randomly extract data and divide it into training and test sets  

Firstly, I did not use this method, and I just selected the first thousand rows of data 

as training set and the data from 1001 row to 1400 row as testing set.  However I 

realized that this operation had some disadvantages because the training set and 

testing set were stable, as a result, the accuracy of the model I trained was not 

representative. Also, in that case, it would be complicated if I want to use different 



training and testing set. Therefore I chose to use random sampling method. And this 

time I applied random sampling method two times. First time, I applied it to 

randomly extracting a certain percentage of data from original data set. Second time 

I used it to help me separate data into training and testing set randomly to prevent 

overfitting.  As following pictures shown. 

 

 
  

3) data preprocessing  

Here I will show my trial process.  

i Firstly I want to apply stratified sampling method to my first step, extracting 

data, to train a more accurate model. However, after I counted the number of 

each values of target columns, I found the number of different class almost the 

same both in training and testing sets, hence I realized that stratified sampling 

methods could make little attributes to improving testing accuracy.  

    

ii Then I read one pdf file called DecryptGISData camera form Papers for NN4, 

it told us that normalizing data over the range 0 - 1 for the network from logistic 

aspect can help to deal with the unreliable data and get more accurate prediction. 

Also, this pdf file also told me to remove bias of lowest and highest values by 

using statistical Z function to reduce noise. I thought this method is feasible and 

then I checked the minimum value and the maximum value of the values of 

input data in training set and testing set as following picture shown. 

 
I found that the difference between the maximum and minimum values arrived 

at 15, therefore I tried to normalize training input data by columns. And it did 

work, I will show the result in the result and discussion section. 

iii Last time, we cannot normalize the target data because if we normalize the target 

data, we will get a Tensor hold outputs whose values are changing to 0 or 1 as 

a result of .long() function, and in that case our model will be become extremely 

inaccurate. As a result, last time I only changed the target to number, from 0 to 

25. However, this time I can use some other method to optimize the target data. 

As we all known, you can only provide values to the machine, not strings when 

doing machine learning. And the Scikit-learn toolkit package can provide a 

convenient tool, LabelEncoder, which could help us easily change category 

information to numerical values. And after that operation, the values of the 

target column were becoming numerical. And I found the value of different 



output were different in the size, but the predicting target letters have no size 

relationship with each other. So we should transfer the value of target column 

from one number to an array in the help of OneHotEncoder, a useful tool 

provided by the Scikit-learn toolkit package. Code will be shown in following 

pictures. 

 
And after running these code shown above, the target values will become arrays 

as following picture shown. 

 

3  Result and Discussion 

1. Test with a few different simple parameters  

◼ Results  

Test number  Data 

preprocessing  

Number of 

neurons 

for hidden 

layer  

Learning 

rate  

Number of 

epoch on  

training  

Testing 

accuracy  

1  No  10  0.01  500  5.95%  

2  No  10  0.01  2000  19.23%  

3  No  14  0.01  2000  25.3%2  

4  No  14  0.01  5000  42.83%  

5  No  100  0.01  5000  63.52%  

6`  Yes(normalize 

data)  

100  0.01  5000  16.98%  

◼ Discussion  

From the results of above six tests, we can conclude that for my training model, with 

the increasing of the number of neurons for hidden layer, the testing accuracy of my 

model show an increasing trend as well. Also, the number of epoch on training is bigger, 



the testing accuracy will be higher. As a result, the number of neurons for hidden layer 

and epoch on training can affect the model accuracy. However, we can find an 

interesting fact that after I normalized data before training them, my model accuracy 

showed a decreasing trend, which made me confused. While the other day I read some 

information related to this data set, I found that every stimulus was converted into 16 

primitive numerical attributes and then scaled to fit into a range of integer values from 

0 through 15, so I thought that maybe lead to the situation in test 6.  

When comparing to the results from paper called Mixtures of Conditional Maximum 

Entropy Models, we can find with the rising number of attributes, the testing accuracy 

would represent a increasing trend, and I have to admit their model is better than me as 

most of the testing accuracy of their model are higher than mine, which could reach 

82.2% (Palov, popescul, Pennock, Ungar 2003). To improve my model, I still have lots 

of work to finish.  

2. Test with different activation function and different optimizer (all without data 

preprocessing)  

◼ Results  

Test 

number  

Number  

of 

neurons 

for 

hidden 

layer  

Learning 

rate  

Number 

of epoch 

on 

training  

Type  of  

activation 

function  

Type 

 of 

optimizer  

Testing 

accuracy  

7  100  0.01  2000  sigmoid  SGD  53.83%  

8  100  0.01  2000  tanh  SGD  70.67%  

9  100  0.01  2000  relu  SGD  76.9%  

10  100  0.01  2000  sigmoid  ASGD  51.52%  

11  100  0.01  2000  sigmoid  Adam  95.2%  

12  100  0.01  2000  sigmoid  Adamax  94.88%  

◼ Discussion  

From above 6 tests we can find that the activation function for hidden layer which called 

tanh or relu can make more attributes to training a more accurate model. Also, the 

optimizer called Adam or Adamax can make our model becaome extremely accurate, 

however, I thought these situation happened because these two optimizer could make 

my training data become overfitting. Different optimizer has different function, and the 



data set I chosen maybe appropriate for SGD  optimizer while Adam and Adamax 

optimizer may make may model become overfitting. 

3. Using mini-batch gradient descent  

1) Define the size of input as 16, the size of hidden layer neuro as 100, the number of 

output classes as 26, the number of epochs as 500, batch size as 5, learning rate as 

0.01 

Following pictures showed the results  

  
  

  

2) Define the size of input as 16, the size of hidden layer neuro as 50, the number of 

output classes as 26, the number of epochs as 500, batch size as 5, learning rate as 

0.01 

Following pictures show the results 

 
◼ Discussion  

According this two result of using mini-batch method, we can find it didn’t work well 

and even it might make the model become less accurate. In my opinion, maybe this 

data set is not appropriate for this method as the data set has fewer outliers or some 

other reasons. 

 

  



4. Constructing a DNN model (The ordinate in below pictures is the loss rate, 

and the abscissa in below pictures is the number of iteration) 

○ 1. No randomly sampling, no data preprocessing, separating data into training and 

testing set through manual operation. (selected the first thousand rows of data as 

training set and the data from 1001 row to 1400 row as testing set) 

Setting 4-layer neuron, the number of 1st hidden layer neuron as 128, the number of 

2nd hidden layer neuron as 64, the number of maximum iteration as 1000. 

 

Results:  

 
Discussion: 

We found the accuracy of the model was very low, only arriving at about 30%, and we 

can interestingly find that after the number of iteration exceeded 500, the loss rate of 

my model represented an increasing trend. And this result was worse than that of the 

model built by Palov, popescul, Pennock, Ungar (2003), and the highest accuracy of 

their model arrived at 82.2%. 

○ 2. Randomly sampling, transferring the target values to arrays. ( randomly extracted 

just 1000 row data to train this model) 

Setting 4-layer neuron, the number of 1st hidden layer neuron as 128, the number of 

2nd hidden layer neuron as 64, the number of maximum iteration as 1000. 

 

Results:  

 
Discussion: 

This time, the accuracy of my model was only 21%, even worse than that of my 

model in last trial. And I found that the loss rate was extremely low when the number 

of maximum iteration arrived at about 500, but later the loss rate began to increase 

with the increasing number of maximum iteration. Therefore, I set the number of 

maximum iteration as 500 to train a new model. 



○ 3. Randomly sampling, transferring the target values to arrays. ( randomly extracted 

just 1000 row data to train this model) 

Setting 4-layer neuron, the number of 1st hidden layer neuron as 128, the number of 

2nd hidden layer neuron as 64, the number of maximum iteration as 500. 

 

Results: 

 
Discussion: 

We found the accuracy of the model had a dramatic increase, achieving 72.5%, which 

was very closely to the result of the model built by Palov, popescul, Pennock, Ungar 

(2003). And this time, the loss rate always decreased as the number of iteration grew, 

which might be a good phenomenon. 

○ 4. Randomly sampling, transferring the target values to arrays and normalizing the 

input data. (randomly extracted just 1000 row data to train this model) 

Setting 4-layer neuron, the number of 1st hidden layer neuron as 128, the number of 

2nd hidden layer neuron as 64, the number of maximum iteration as 1000 

 

Results: 

 
Discussion: 

After I normalized the values of input atributes, the accuracy was still around 72%, 

therefore I tried to use a bigger data set to train the model to check whether this 

method is helpful. In that case, I did the next trial. 

○ 5. Randomly sampling, transferring the target values to arrays and normalizing the 

input data. (randomly extracted just 3000 row data to train this model) 

Setting 4-layer neuron, the number of 1st hidden layer neuron as 128, the number of 

2nd hidden layer neuron as 64, the number of maximum iteration as 1000 

 

 



Results: 

 
Discussion: 

After I extracted 3000 row data to train the model, the accuracy of the model arrived 

at 84.5%, which was even higher than the best accuracy of the model built by Palov, 

popescul, Pennock, Ungar (2003). Therefore, I removed this method, normalizing the 

input data, and then repeat the 3rd trial above, however, this time I extracted 3000 row 

data as well. Finally, the result come out, and the accuracy was only 23.1% as 

following picture shown. As a result, it told me that the method of normalizing the 

input data was useful. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 Conclusion and Future Work 

I have constructed a DNN model to achieve the goal that predicting the letter from other 

16 attributes. And I finally successfully used these useful information to predict the 

target letter and got a reliable model after I applied some helpful methods, like randomly 

sampling and some data preprocessing approaches. 

And during my trial this time, I found some methods which may be not useful to get a 

high accuracy when I was constructing neural network last time played a great role in 

improving the accuracy of my model this time. And this time, I applied some new 

methods like transferring the target values to arrays and normalizing the input data, and 

the results come out showed us that these methods worked well and were very helpful 

to reduce machine learning errors. Also, according the results of my test, I found that 

the number of maximum iteration and the size of training data can affect the accuracy 

of my DNN model. And I guessed that there exists a critical point and when we set the 

critical value of the number of maximum iteration or a critical value of the size of 

training data, the accuracy of model will arrive at the highest value and the model will 

perform pretty good. However, I haven’t figured out the reason, which I will focus on 

during my future work. 

As for my future work, I still have a lot work to do, I should and I will keep on working 

how to construct a CNN or a RNN model, and I should have a better and deeper 

understanding of deep machine learning. Moreover, I should read more paper about 

how to reduce data set outliers to get a more accurate model.  
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