
DNN MODEL: Classifying capital letter from 16 numerical data

Chengwei Zhu

Research School of Computer Science, The Australian National University, Canberra

{Chengwei Zhu }@u6342721@anu.edu.au

Abstract. This data set includes 20000 data and the feature of these data were

summarized 16 different numerical attributes, and different combination of these 16

attributes can represent different English capital letters, and my training model can

predicate the letters by the 16 different numerical attributes. This time, I used the asme

data set and tried using a deep learning approach, constructing a DNN model to predict

the target attribute. Also, I used some methods, including data normalization, random

sampling or some other data preprocessing approaches, setting different parameters of

DNN model like the number of hidden layer neuron, to make my model as much

accuracy as possible. And this time the accuracy of my model arrived at 84.5%, better

than the results got by Pavlov, Popescul, Pennock and Ungar (2003).

Keywords：randomly sampling, data normalization, neural net, DNN model

1 Introduction

This time, I chose the same data set as last time, from the UCI Machine Learning

Repository located at http://archive.ics.uci.edu/ml/datasets.html, and this data set is

called Letter recognition. As we all known, with the development of modern science

and technology, data statistics and analysis techniques have been widely applied to

various fields. According to Paliouras and S.Bree(2005), quantities of empircM

concept learning algo-rithms have been improved since two decades ago. Also, when

human experts faced with difficult situation, they always can treat these problems as

special cases of familiar examples by classifying and analyzing them and then apply

known solutions to work it out (de Groot, Chase & Simon, cited in W.Fery, J.Slate,

1991). As a result, I planned to find a suitable data set to check the effect of using digital

features in the training set, which could help me realize the power of analytics in some

degree. Finally, the data set I chose is called ‘Letter Recognition Data Set’, has 20000

characters which were produced by 20 randomly distorted and different fonts. And these

20 fonts could make up different character images and each of them would be identified

as one of 26 English capital letters. During the whole process, I constructed a DNN

http://archive.ics.uci.edu/ml/datasets.html

model to predict the target value through other 16 attributes. And I used randomly

sampling and some data preprocessing methods to get a better and reliable model.

2 Method

1) Change the column name and convert string target values to numeric values firstly.

I will show the attribute information of this datset.

Letter capital letter (string)

x-box horizontal position of box (integer)

y-box vertical position of box (integer)

width width of box (integer)

high height of box (integer)

onpix total # on pixels (integer)

x-bar mean x of on pixels in

box

(integer)

y-bar mean y of on pixels in

box

(integer)

x2bar mean x variance (integer)

y2bar mean y variance (integer)

xybar mean x y correlation (integer)

x2ybr mean of x * x * y (integer)

xy2br mean of x * y * y (integer)

x-ege mean edge count left to

right

(integer)

xegvy correlation of x-ege with

y

(integer)

y-ege mean edge count bottom

to top

(integer)

yegvx correlation of y-ege with

x

(integer)

According this form, the type of target values is string, I should convert them to

numeric values at first.

2) Randomly extract data and divide it into training and test sets

Firstly, I did not use this method, and I just selected the first thousand rows of data

as training set and the data from 1001 row to 1400 row as testing set. However I

realized that this operation had some disadvantages because the training set and

testing set were stable, as a result, the accuracy of the model I trained was not

representative. Also, in that case, it would be complicated if I want to use different

training and testing set. Therefore I chose to use random sampling method. And this

time I applied random sampling method two times. First time, I applied it to

randomly extracting a certain percentage of data from original data set. Second time

I used it to help me separate data into training and testing set randomly to prevent

overfitting. As following pictures shown.

3) data preprocessing

Here I will show my trial process.

i Firstly I want to apply stratified sampling method to my first step, extracting

data, to train a more accurate model. However, after I counted the number of

each values of target columns, I found the number of different class almost the

same both in training and testing sets, hence I realized that stratified sampling

methods could make little attributes to improving testing accuracy.

ii Then I read one pdf file called DecryptGISData camera form Papers for NN4,

it told us that normalizing data over the range 0 - 1 for the network from logistic

aspect can help to deal with the unreliable data and get more accurate prediction.

Also, this pdf file also told me to remove bias of lowest and highest values by

using statistical Z function to reduce noise. I thought this method is feasible and

then I checked the minimum value and the maximum value of the values of

input data in training set and testing set as following picture shown.

I found that the difference between the maximum and minimum values arrived

at 15, therefore I tried to normalize training input data by columns. And it did

work, I will show the result in the result and discussion section.

iii Last time, we cannot normalize the target data because if we normalize the target

data, we will get a Tensor hold outputs whose values are changing to 0 or 1 as

a result of .long() function, and in that case our model will be become extremely

inaccurate. As a result, last time I only changed the target to number, from 0 to

25. However, this time I can use some other method to optimize the target data.

As we all known, you can only provide values to the machine, not strings when

doing machine learning. And the Scikit-learn toolkit package can provide a

convenient tool, LabelEncoder, which could help us easily change category

information to numerical values. And after that operation, the values of the

target column were becoming numerical. And I found the value of different

output were different in the size, but the predicting target letters have no size

relationship with each other. So we should transfer the value of target column

from one number to an array in the help of OneHotEncoder, a useful tool

provided by the Scikit-learn toolkit package. Code will be shown in following

pictures.

And after running these code shown above, the target values will become arrays

as following picture shown.

3 Result and Discussion

1. Test with a few different simple parameters

◼ Results

Test number Data

preprocessing

Number of

neurons

for hidden

layer

Learning

rate

Number of

epoch on

training

Testing

accuracy

1 No 10 0.01 500 5.95%

2 No 10 0.01 2000 19.23%

3 No 14 0.01 2000 25.3%2

4 No 14 0.01 5000 42.83%

5 No 100 0.01 5000 63.52%

6` Yes(normalize

data)

100 0.01 5000 16.98%

◼ Discussion

From the results of above six tests, we can conclude that for my training model, with

the increasing of the number of neurons for hidden layer, the testing accuracy of my

model show an increasing trend as well. Also, the number of epoch on training is bigger,

the testing accuracy will be higher. As a result, the number of neurons for hidden layer

and epoch on training can affect the model accuracy. However, we can find an

interesting fact that after I normalized data before training them, my model accuracy

showed a decreasing trend, which made me confused. While the other day I read some

information related to this data set, I found that every stimulus was converted into 16

primitive numerical attributes and then scaled to fit into a range of integer values from

0 through 15, so I thought that maybe lead to the situation in test 6.

When comparing to the results from paper called Mixtures of Conditional Maximum

Entropy Models, we can find with the rising number of attributes, the testing accuracy

would represent a increasing trend, and I have to admit their model is better than me as

most of the testing accuracy of their model are higher than mine, which could reach

82.2% (Palov, popescul, Pennock, Ungar 2003). To improve my model, I still have lots

of work to finish.

2. Test with different activation function and different optimizer (all without data

preprocessing)

◼ Results

Test

number

Number

of

neurons

for

hidden

layer

Learning

rate

Number

of epoch

on

training

Type of

activation

function

Type

 of

optimizer

Testing

accuracy

7 100 0.01 2000 sigmoid SGD 53.83%

8 100 0.01 2000 tanh SGD 70.67%

9 100 0.01 2000 relu SGD 76.9%

10 100 0.01 2000 sigmoid ASGD 51.52%

11 100 0.01 2000 sigmoid Adam 95.2%

12 100 0.01 2000 sigmoid Adamax 94.88%

◼ Discussion

From above 6 tests we can find that the activation function for hidden layer which called

tanh or relu can make more attributes to training a more accurate model. Also, the

optimizer called Adam or Adamax can make our model becaome extremely accurate,

however, I thought these situation happened because these two optimizer could make

my training data become overfitting. Different optimizer has different function, and the

data set I chosen maybe appropriate for SGD optimizer while Adam and Adamax

optimizer may make may model become overfitting.

3. Using mini-batch gradient descent

1) Define the size of input as 16, the size of hidden layer neuro as 100, the number of

output classes as 26, the number of epochs as 500, batch size as 5, learning rate as

0.01

Following pictures showed the results

2) Define the size of input as 16, the size of hidden layer neuro as 50, the number of

output classes as 26, the number of epochs as 500, batch size as 5, learning rate as

0.01

Following pictures show the results

◼ Discussion

According this two result of using mini-batch method, we can find it didn’t work well

and even it might make the model become less accurate. In my opinion, maybe this

data set is not appropriate for this method as the data set has fewer outliers or some

other reasons.

4. Constructing a DNN model (The ordinate in below pictures is the loss rate,

and the abscissa in below pictures is the number of iteration)

○ 1. No randomly sampling, no data preprocessing, separating data into training and

testing set through manual operation. (selected the first thousand rows of data as

training set and the data from 1001 row to 1400 row as testing set)

Setting 4-layer neuron, the number of 1st hidden layer neuron as 128, the number of

2nd hidden layer neuron as 64, the number of maximum iteration as 1000.

Results:

Discussion:

We found the accuracy of the model was very low, only arriving at about 30%, and we

can interestingly find that after the number of iteration exceeded 500, the loss rate of

my model represented an increasing trend. And this result was worse than that of the

model built by Palov, popescul, Pennock, Ungar (2003), and the highest accuracy of

their model arrived at 82.2%.

○ 2. Randomly sampling, transferring the target values to arrays. (randomly extracted

just 1000 row data to train this model)

Setting 4-layer neuron, the number of 1st hidden layer neuron as 128, the number of

2nd hidden layer neuron as 64, the number of maximum iteration as 1000.

Results:

Discussion:

This time, the accuracy of my model was only 21%, even worse than that of my

model in last trial. And I found that the loss rate was extremely low when the number

of maximum iteration arrived at about 500, but later the loss rate began to increase

with the increasing number of maximum iteration. Therefore, I set the number of

maximum iteration as 500 to train a new model.

○ 3. Randomly sampling, transferring the target values to arrays. (randomly extracted

just 1000 row data to train this model)

Setting 4-layer neuron, the number of 1st hidden layer neuron as 128, the number of

2nd hidden layer neuron as 64, the number of maximum iteration as 500.

Results:

Discussion:

We found the accuracy of the model had a dramatic increase, achieving 72.5%, which

was very closely to the result of the model built by Palov, popescul, Pennock, Ungar

(2003). And this time, the loss rate always decreased as the number of iteration grew,

which might be a good phenomenon.

○ 4. Randomly sampling, transferring the target values to arrays and normalizing the

input data. (randomly extracted just 1000 row data to train this model)

Setting 4-layer neuron, the number of 1st hidden layer neuron as 128, the number of

2nd hidden layer neuron as 64, the number of maximum iteration as 1000

Results:

Discussion:

After I normalized the values of input atributes, the accuracy was still around 72%,

therefore I tried to use a bigger data set to train the model to check whether this

method is helpful. In that case, I did the next trial.

○ 5. Randomly sampling, transferring the target values to arrays and normalizing the

input data. (randomly extracted just 3000 row data to train this model)

Setting 4-layer neuron, the number of 1st hidden layer neuron as 128, the number of

2nd hidden layer neuron as 64, the number of maximum iteration as 1000

Results:

Discussion:

After I extracted 3000 row data to train the model, the accuracy of the model arrived

at 84.5%, which was even higher than the best accuracy of the model built by Palov,

popescul, Pennock, Ungar (2003). Therefore, I removed this method, normalizing the

input data, and then repeat the 3rd trial above, however, this time I extracted 3000 row

data as well. Finally, the result come out, and the accuracy was only 23.1% as

following picture shown. As a result, it told me that the method of normalizing the

input data was useful.

4 Conclusion and Future Work

I have constructed a DNN model to achieve the goal that predicting the letter from other

16 attributes. And I finally successfully used these useful information to predict the

target letter and got a reliable model after I applied some helpful methods, like randomly

sampling and some data preprocessing approaches.

And during my trial this time, I found some methods which may be not useful to get a

high accuracy when I was constructing neural network last time played a great role in

improving the accuracy of my model this time. And this time, I applied some new

methods like transferring the target values to arrays and normalizing the input data, and

the results come out showed us that these methods worked well and were very helpful

to reduce machine learning errors. Also, according the results of my test, I found that

the number of maximum iteration and the size of training data can affect the accuracy

of my DNN model. And I guessed that there exists a critical point and when we set the

critical value of the number of maximum iteration or a critical value of the size of

training data, the accuracy of model will arrive at the highest value and the model will

perform pretty good. However, I haven’t figured out the reason, which I will focus on

during my future work.

As for my future work, I still have a lot work to do, I should and I will keep on working

how to construct a CNN or a RNN model, and I should have a better and deeper

understanding of deep machine learning. Moreover, I should read more paper about

how to reduce data set outliers to get a more accurate model.

References list.

1. Gedeon, T. D. (1995, November). Indicators of hidden neuron functionality: the weight

matrix versus neuron behaviour. In Artificial Neural Networks and Expert Systems, 1995.

Proceedings, Second New Zealand International Two-Stream Conference on (pp. 26-29).

IEEE.

2. Gedeon, T. D., & Bowden, T. G. (1992). Heuristic pattern reduction. In
International Joint Conference on Neural Networks (Vol. 2, pp. 449-453).

3. Frey, P. W., & Slate, D. J. (1991). Letter recognition using Holland-style adaptive
classifiers. Machine learning, 6(2), 161-182.

4. Pavlov, D., Popescul, A., Pennock, D. M., & Ungar, L. H. (2003). Mixtures of conditional

maximum entropy models. In Proceedings of the 20th International Conference on

Machine Learning (ICML-03) (pp. 584-591).

