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Abstract

Handwritten Recognition is attractive and necessary in the real world. Some research
adopt normal classifier to classify the handwritten but the result is not reliable. In this report,
we are doing research on recognition and prediction in handwritten digits, using Convolutional
Neural Network (CNN) as deep learning network and adopting network reduction method to
improve the classification and prediction performance. We use a MINST dataset for training
and testing. The techniques help us get the result at 98% accuracy. Also, in this report, we
introduce the the methods of reduction which is on the basis of distinctiveness and do analysis
and comparison on optimizers to select the most suitable optimizer. And we also discuss the
comparison of Cosine Similarity and Euclidean Distance when compute the distinctiveness.

1 Introduction
Handwritten Recognition is an attractive and basic issue in the area of Image Recognition.

LeCun and Bottou use Linear Classifier and achieve 7.6% error rate and 3.5% error rate by using
Non-Linear Classifier. ([LBBH98]). But for an image dataset, a normal classifier is not suitable
for classification because the features of images are quite much and each pixel of the image cannot
be simply classify to one or two classes. And a normal classifier is hard to extract the features and
hidden features from the image.

Therefore, a neural network is more suitable in the work of recognizing the images. And
Convolutional Neural Network (CNN ) is always considered as one of the best method to dispose
on images. So in this study, we use CNN to build up a deep learning network to do recognition
(classification) and prediction on handwritten digits. And we use MINST as the dataset which is
always used in handwritten digits research.

In addition, determining the exact number of hidden units is always a hard problem in Neu-
ral Network. In this study, we adopt the network reduction according to T.D. Gedeon’s paper
([TG91]) and do reduction on CNN on the basis of the distinctiveness of hidden units to remove
some unnecessary hidden units to reduce the time and space complexity of CNN and improve the
prediction performance.

To help improving the performance of prediction of CNN and Network Reduction, in this
study, we also compare and analyze the optimizers and choose the most suitable one to apply for
the CNN model. And we also discuss the difference of Cosine Similarity and Euclidean Distance
and which one we should choose to compute distinctiveness.

The outline of the report is listed below. Section 2 declares the problem statement of the
report. Section 3 introduce the dataset MINST we use. Section 4 introduces CNN model and
introduces some methods to build up the CNN model and introduce how to select the best opti-
mizers. Section 5 will introduce the reduction methods including how to remove units on the basis
of distinctiveness and the advantages of reduction methods. Section 6 will show and evaluate the
results we achieve and Section 8 and Section 9 list the conclusion and future work of this report.
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2 Problem statement
Given a number of information (every pixels) of handwritten digits, after training, our predic-

tion model can classify and the handwritten digits and can predict the handwritten digits according
to the information.

Input is every pixels of the picture of handwritten digits, while output is the predicted hand-
written digits.

3 Dataset
In this study, the dataset we choose is MINST (Modified National Institute of Standards

and Technology database). MINST is a large database of handwritten digits that is commonly
used for training various image processing systems ([LCB09]). The Figure 1 shows a sample of the
handwritten digits. The database is also widely used for training and testing in the field of machine

Figure 1: MINST sample.

learning. This dataset contains 70,000 28*28 images of handwritten digits and each features of the
dataset is one of the pixels of the picture. Each MNIST digit is labeled with the 10 correct digit
class (0, 1, ... 9). The reason why we choose this dataset is:

1. This dataset is a image dataset where every instances is represented by 320 pixels. And there
are 10 classes (labels).

2. The total number of instances is 70,000 and we have about 60,000 instances as training set
and about 10,000 as testing set.

3. Convolutional Neural Network is always considered as a deep learning network for composing
on images.

4 Convolutional Neural Network
In machine learning, a Convolutional Neural Network (CNN ) is a class of deep, feed-forward

artificial neural networks, most commonly applied to analyzing visual imagery. A CNN consists
of an input and an output layer, as well as multiple hidden layers. The hidden layers of a CNN
typically consist of convolution layers, pooling layers, fully connected layers and normalization
layers. The structure of CNN is shown in Figure 2. In this study, we first build input layer, output
layer and two convolutional layers. Second, during each training pass, randomly remove a fraction
of neural connections and adds noise to hidden units. And in this study, the activation function
is F.relu(). Using this CNN, we set 320 neurons which represent features of dataset in the input
layer and set 10 neurons which represent classes (labels) in the output layer.
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Figure 2: Structure of CNN

And normally, we use the rules put forward by Heaton ([Hea08]) to decide the number of
neurons in hidden layer. The optimal number of hidden neurons is in the range between 4 to half
of the number of neurons in input layer. And in this study, because we want to adopt network
reduction technique, we set the number of hidden neurons related to half of the number of input
layers but a little bit larger. We will explain this in the Section 6.1

4.1 Best Optimizer
In this report, we want to compare the optimizers. Different optimizer apply to different

cases. Gradient descent is one of the most popular algorithms to perform optimization and by
far the most common way to optimize neural networks. At the same time, every state-of-the-art
Deep Learning library contains implementations of various algorithms to optimize gradient descent.
These algorithms, however, are often used as black-box optimizers, as practical explanations of their
strengths and weaknesses are hard to come by. So in the study, we will compare a set of different
optimizers (SGD, Adagrad, RMSprop and Rprop) by comparing the predicted result ([KB14]).

5 Reduction Algorithm
In this study, we adopt distinctiveness as the reduction technique. In the first step, we build

up a normal Convolutional Neural Network (CNN) according to Section 4. And we divide the
input as batches to improve the efficiency. Secondly, we train the CNN model using the training
set of dataset (Section 3). Then we check the distinctiveness between hidden units and remove the
"useless" units. Then we retrain the CNN model by using the weight of the original model where
we can improve the training efficiency. The procedures are shown in the Figure 6.1.

5.1 Distinctiveness
In this report, we adopt the method for reduction is distinctiveness. The distinctiveness of

hidden units is determined from the unit output activation vector over the pattern presentation set.
For each hidden unit, we construct a vector of the same dimensionality as the number of patterns
in the training set, whose size is n*m, each component of the vector corresponding to the output
activation of the unit, which is fc1 of the net in the code. This vector represents the functionality
of the hidden units in input space. And in this model, we remove one or groups of units which are
regarded as “useless”. And then we will retrain the network for recovering from deleting.

5.1.1 Remove Useless Vector

In the study, the key technique is pruning the vector. There are some advantages:

Time Complexity The basic idea of reduction is removing the “useless” vector. We set N
is the number of the neuron in hidden layer, M is the number of inputs patterns. Back to Neural
Network, for a Convolution Neural Network: If the number of neurons of each layer is n1, n2, n3,
here n1 is M For one epoch, the time complexity should be

O(n1 ∗ n2 + n2 ∗ n3).

Because the number of input has been set, so n1 and n3 can be regarded as constant, so the time
complexity should be

O(N),

3



when N is n2. From this, we can clearly know that the time complexity of Neural Network is
based on the number of neuron in hidden layer. So removing the “useless” neurons can reduce the
running time of Neural Network and improve the efficiency.

Space Complexity Here we set M is the number of inputs, N is the number of hidden
neurons, C is the number of output as well as the number of class in target. For space complexity,
in the BP network, for hidden layer, the size of the matrix is [M * N ] and for output layer is [N
* C ]. In this case, assume the M and C is constant, So the Space Complexity is still based on
N . So removing the “useless” neurons can reduce the space of Neural Network and improve the
efficiency.

Better Fitting T.D. Gedeon declare that reduction function can shorten the time and
reduce the space ([TG91]). In this study, we also discuss another advantages of reduction which
is that reduction can solve the over-fitting problem. Figure 3 shows a simple model of Neuron
Network. And the output of the Network is

y = f(w1 ∗ x1 + w2 ∗ x2 + · · ·+ wn ∗ xn),

For classification problem, briefly, we want to seek for a line to divide the input into the
classes. The output will perform well when the line is divide the input into classes but not too
specific, which means that we don’t want the line is matching the input. So in the formula, if we
add a variable x and it has weight w, then the formula will start to get close to the data and that
will be performed badly in test data. For the Neural Network, if we use too much neurons which
means that we add too much variable w to the formula, then the over-fitting problem (Figure 4)
will occur. So if we use reduction method, we can prevent the over-fitting problem by removing
the w from the formula. So in this case, reduction technique can also improve the performance of
the Neural Network in a way.

Figure 3: Structure of One Hidden Layer Network

Figure 4: Overfitting Problem

In this study, according to T.D. Gedeon’s paper ([TG91]), for distinctiveness problem, useless
hidden units are the neurons which is too relevant to each others because the units perform no
real function in the final product and may be supportive of significant units. In this model, we
want to remove the group of vectors, which is removing the hidden units. The vectors for clone
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units would be identical irrespective of the relative magnitudes of their outputs. We introduce the
method for calculate the similarity of the vectors.

5.2 Cosine Similarity
Cosine Similarity is a measure of similarity between two non-zero vectors of an inner product

space that measures the cosine of the angle between them ([NB10]). And in the interval[0, 2/pie),
if the calculating value is bigger, then the two vectors are more relevant. The formula to calculate
cosine similarity is

cos(xxx,yyy) =
xxx · yyy

||xxx|| · ||yyy||
.

In the study, we convert the cosine value to degree. And to normalize vector angle calculations
we extend angular.

Extend Angular Moved the origin point to (0.5,0.5) is a method to extend the angular in
[0, pie) to [0, 2pie) and the angle will be easier to judge (Figure 5). So moving the origin point to
(0.5, 0.5) is a method to help us check the similarity of the vectors. If obtained angle is smaller
than 15◦, the two neurons are similar and we need to remove one of them. And we need to add
the weight vector of the removed unit to the one remain. If obtained angle is larger than 165◦, the
two neurons have complementary effects, then both of them need to be removed.

Figure 5: Normalization to Extend Angular

5.3 Euclidean Distance
In mathematics, the Euclidean distance or Euclidean metric is the “ordinary” straight-line

distance between two points in Euclidean space. In general, for an n-dimensional space. The
distance is √√√√ n∑

i=1

(xi − yi)2.

Because the length of the vector is the same, so we can use euclidean distance to calculate
how far is between the two vectors in a n-dimensional space(assume n is the length of the vector).
If the distance is large, then the two vectors are more irrelevant. If small, then more relevant.

In essence, Cosine similarity is like (squared) Euclidean distance after scaling each vector to
unit length. First, according to the formula of Cosine Similarity and Euclidean Distance, we need
to normalize the points before using Euclidean yields:

Euclidean(
A

||A||
,

B

||B||
)2 = 2[1− CosSim(A,B)],

Then we calculate the Euclidean Distance and we can get a value which is similar with Cosine
Similarity. Then if the value is bigger than cos(15◦) and the direction of two vectors of units are
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not opposite, the two units are useful and we need to preserve both of them. Otherwise, we need
to remove one of these two units according to the idea of reduction.

Comparison between Cosine Similarity and Euclidean Distance In this case, Cosine
Similarity will perform better than Euclidean Distance. The graph shows that Euclidean distance
is the absolute distance between the points in the space and is directly based on the locations of
the points. Cosine Similarity is calculating the angle of the vector and it shows the difference on
the direction instead of location. So for example, assume two points (0, 1) and (1, 0) in the two
dimensional space, the Euclidean distance is small but the angle is big. That is to say, euclidean
distance shows the difference between every features of the objects while cosine similarity is on
the directions. In this case for seeking for the relevant vector in hidden units, we want to classify
the input into classes. Instead of seeking for the cluster center, we are using the formula (Figure
6) which can be regarded as a line in the space. Every variable influence the direction of the line
and adjust the line directions to classify the inputs data. So in this case, we focus on the direction
which means that in the example (0,1) and (1,0), these two vectors are different. Therefore, in our
study, we use Cosine Similarity to calculate the relevance of the vectors. ([hm])

Figure 6: Comparison on Cosine Similarity and Euclidean Distance.

6 Evaluation

6.1 Experiment Setup
In this study, we set 320 neurons in input layer represent the features of dataset and 10 neurons

in output layer represent the classes. And as we discuss in Section 4, we set the number of neurons
is 165.

Also we set batch size as the default value which is 64 and the test batch size is 1000. It may
take more time to compute but there will be less noisy.

We set learning rate as 0.01 and the number of epochs as 10. But in the experiment, we set
the epoch is 1 because when epoch is 1, it is easier to find the difference between the 4 optimizers
and it is more obvious to find whether reduction method is efficient. In some case, if we set the
epoch as the default value which is 10, because of the good training, there is no removed unit in
the network. So in this study, the results for comparing the optimizers and reduction methods are
shown below when epoch is 1. But the final result is shown when epoch is 10.

And in the study, we will compare a set of the optimizer (SGD, Adagrad, RMSprop and
Rprop). We train the network with different optimizers and do comparison and analysis.

And we also compare the cosine similarity and euclidean distance. Although we have discuss
that Cosine Simialarity is much suitable in solving our problem which is a direction problem in
the Subsection 5.3, we still want to compare the performance on this two methods for calculating
the distinctiveness.

7 Results

7.1 Best Optimizer Result
The Table 1 shows the average results (test time = 3) of different optimizers that we discuss

in Section 4. We use the set of optimizers (SGD, Adagrad, RMSprop and Rprop) and demonstrate
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the differences of performances. As Table 1 shown, we can find that Adagrad performs best and
the result is 98% accuracy while RMSprop performs worst at 11% accuracy after reduction. SGD
performs a little worse than Adagrad which is 96% accuracy and Rprop is 88% accuracy. And

Table 1: Comparison Of Optimizers

Testing Accuracy
of
No Reduction

Testing Accuracy
of
Reduction

Average Loss of
No
Reduction

Average Loss
of
Reduction

No.
of
Removed
Units

Adagrad 97% 98% 0.0942 0.0702 2
SGD 95% 97% 0.1835 0.1105 7
RMSprop 11% 11% 2.3015 2.3092 82
Rprop 88% 88% 0.9867 0.9506 3

the Table 1 also shows that although RMSprop has removed 82 hidden neurons, the result didn’t
improve after reduction and the average loss is high. So we can declare that RMSprop is not
suitable in this case.

Compare with SGD, Adagrad and Rprop, SGD and Adagrad all perform better than Rprop
in not only the result at accuracy but also in testing average loss and reduction efficiency. After
using reduction, Adagrad and SGD remove some hidden units and the results increase while the
result of Rprop keep balanced. And the result of Adagrad is up to 98% and the average loss is
only 0.0702 after removing two hidden units which is better than SGD (Accuracy: 97%; Testing
Average Loss: 0.1105; Removed Units: 7). So we can declare that Adagrad is the best choice in
this case.

7.2 Reduction Algorithm Result
As the Table 2 shown, using Adagrad as optimizer, the result increase from 97% to 98% and

there are two hidden units are removed. And the testing average loss decrease from 0.0942 to
0.0702 in the test set.

Table 2: Comparison Of Reduction and No Reduction

Adagrad
Testing Accuracy
of
No Reduction

Testing Accuracy
of
Reduction

Average Loss
of
No
Reduction

Average Loss
of
Reduction

No.
of
Removed
Units

First Test 97% 98% 0.0941 0.0702 2
Second Test 97% 98% 0.0943 0.0700 2
Third Test 97% 98% 0.0942 0.0704 2

And the loss is plotted in the Figure 7. We can find that the loss decreases from over 2.5 to
lower than 0.5. And the loss decrease obviously in the beginning of training and keep stable while
the epoch is large. There is no plateau in curve. So the training is reliable.

Table 3 shows the results of using Cosine Similarity and Euclidean Distance. In the table,
we can see that Cosine Similarity is a little better than Euclidean Distance. But as we discuss in
Subsection 6, Cosine Similarity is suitable for disposing the direction problem like the similarity
of two vectors while Euclidean Distance is more suitable in calculating the distance like clustering
algorithm.

Table 3: Comparison of Cosine Similarity and Euclidean Distance
Fist Test Second Test Third Test

Cosine Similarity 98.0% 98.2% 97.9%
Euclidean distance 97.8% 98.0% 97.6%

Table 4 shows the different testing running time of no reduction network and reduction net-
work. The table shows clearly that with reduction technique, the network spend less time on
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Figure 7: Loss Trends

testing. So the reduction technique can reduce the testing running time significantly as we discuss
in Section 5.1.1.

Table 4: Average Time Comparison of Reduction and No Reduction for each Epoch
Testing Time (Seconds) First Test Second Test Third Test
Reduction 1.6583 1.6678 1.6723
No Reduction 1.6164 1.6204 1.6160

And Table 5 shows the result when we set epoch to 10 and we also use Adagrad and reduction
techniques. As the table shown, the average accuracy is up to 99.1% and the maximum result is
99.3% while the minimum is 98.9%. And the average number of removed units is 0.4 where can
be considered as that there are no units need to be removed because the original CNN is good
enough.

Table 5: Result For Final Test
First
Test

Second
Test

Third
Test

Forth
Test

Fifth
Test Max Min Ave

Accuracy 98.9 99.2 99.1 99.3 98.9 99.3 98.9 99.1
No.
of
Removed
Units

1 0 0 0 1 1 0
0.4
∼=
0

From all results above, we can say that reduction technique can help us improve the network
by not only reducing the running time and space, but also improve the performance of prediction
at accuracy.

7.3 Comparison with a published paper
In this study, we compare the results with LeCun and Botton ([LBBH98]). LeCun and Botton

adopt Linear and Non Linear Classifier on MINST data. In their study, each input pixel value
contributes to a weighted sum for each output unit and the output unit with the highest sum
(including the contribution of a bias constant) indicates the class of the input character. For Linear
Classifier, they improve the performance to where the error rate is 7.6% by training each unit of a
single-layer network to separate each class from each other class. For Non Linear Classifier, they
use baseline Nearest Neighbor Classifier with Euclidean distance measure between input images.
They declared that the classifier has the advantage that no training time, and no brain on the
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part of the designer, are required. But they also pointed out that the memory requirement and
recognition time are large. And the error rate of non-linear classifier is 2.4%.

So compare to their work, this study improve the performance to a lower error rate (0.7% to
1 %). And the result is more stable while the error rate of Linear Classifier is from 7.6% to 12%
and Non Linear Classifier is from 2.4% to 5.0%.

8 Conclusion
In this paper, we showed the work on build up the Convolutional Neural Network (CNN). We

use CNN to work on MINST dataset to dispose and do the prediction on handwritten digits on
the basis of pictures of different handwritten digits. As the result shown, the CNN model can do
a reliable prediction on handwritten digits. And it also proves that CNN is useful in composing
pictures.

Besides, we have done network reduction on the CNN to reduce the time and space complexity
and improve the performance of prediction. We adopt network reduction technique on the basis
of distinctiveness declared by T.D. Gedeon ([TG91]).

With CNN and network reduction, we get a result at 98% accuracy in predicting handwritten
digits which is better than the one without reduction at 97%. And in the study, we also compare
the optimizers and the result show that Adagrad is the best choice in this case.

Besides, by comparing with another paper ([LBBH98]) which is also working on prediction in
handwritten digits using MINST dataset, our result is better in prediction and our result is more
stable.

So in this study, our work can classify (recognize) and predict the handwritten digits signif-
icantly using CNN and network reduction techniques and our work also provide a analyze and
comparison on different optimizers. And our work also compare the Cosine Similarity and Eu-
clidean Distance in computing distinctiveness which is the measure of network reduction.

9 Future Work
In the study, we still need to set some parameters like learning rate, epochs and so on. And we

need to choose the optimizer by testing the results which may waste time. So we need to focus on a
non-parameter Convolutional Neural Network (CNN) model and provide a more reliable optimizer.
And Qiao, who works on Voice Recognition, declares that although the result at 98% is high but
it may occur a big problem in the 2% bad prediction which means that the report is not complete
robust ([Qia18]). So a more accurate prediction model should be our future work.
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