
The Optimization of NN Classification: Based on 

Feature Selection with Genetic Algorithm & Hidden 

Neuron Pruning 

Le Yang 

Research School of Computer Science, Australian National University 

U6023269@anu.edu.au 

Abstract. Feed-forward neuron networks of several layers trained by back-

propagation has been used to solve plenty of problems for research from the end 

of last century. Researchers requires more hidden neurons for some research. 

However, these excessive neurons which apply no efficacy in final products are 

redundant after learning. Similarly, researchers could specially select effective 

combination of features to input neuron instead of inputting all features. Thus, 

some researchers suggested that excess neurons could be removed, but older 

methods still have some disadvantages in efficiency. In this report, author tried 

to implement both neuron network pruning and feature selection based on 

Genetic Algorithm to delete redundant neurons automatically. This report would 

solve dataset classification problem. As the result, superfluous neurons would be 

pruned with little negative effects to accuracy (about 90%). Since this report took 

simple method, the result performs a little worse than some papers with more 

advanced method. 

Keywords: Network Reduction, Genetic Algorithm, Feature Selection, Neuron 

Pruning, Classification, Mushrooms  

  

1 Introduction 

In this report, a simple feed-forward network with input, output layer and one hidden 

layer would be assumed. To simplify the discussion, we have assumed this problem is 

a binary classification problem. A set of inputs with desired outputs (i.e. target) would 

be used to train a network which applied back-propagation of error methods [1]. 

Sigmoid function has been chosen in this report as activation function in 

implementation for simplicity. 

Sigmoid_function(x) = (1 + e−𝑥)−1 

mailto:U6023269@anu.edu.au


2 Le Yang 

1.1 Background 

1.1.1 Introduction of Back-Propagation Algorithm(BP) 

As the simplicity in theory, back-propagation algorithm is widely used from the last 

century to current in building Neuron Network. This algorithm and its derivative 

methods could be usually found in various area like “Handwritten Digit Recognition” 

[2] or “Automatic Control System Design” [3]. 

Although Back-propagation algorithm is diffusely used, the disadvantage of it also 

should be overcome. The major drawback of it is that back-propagation algorithm 

probably cost a big number of time to training network. In addition, although we can 

determine the input and output neuron with the architecture of dataset (attribute number 

for input and kind of classification for output), we are still unable to decide the number 

of hidden neuron easily.  

Therefore, reduction of networks is focused by many researchers. As they indicated, 

using network reduction technology can avoid these two major disadvantages we 

mentioned before. 

It can improve the efficiency of data testing, and more important, estimate the 

minimum number of hidden neurons to prepare the problems with similar size we 

would solve in future [4].  

As the frontiers, Sietsma and Dow tried to prune trained networks in 1988. Their 

method, in brief, is removing neurons whose input is always near to zero and binding 

output of others as 0 or 1 in first step, then examining neurons output again for 

redundancy about the separation of classes within the given input space in second step 

[5].  

1.1.2 Introduction of Genetic Algorithm(GA) 

In brief, Genetic Algorithms are probabilistic search procedures which are designed to 

solve problems with "strings" states in large spaces [6].  As a part of Evolutionary 

computing, this bio-inspired heuristic algorithm, which could simulate an ecosystem 

with population and reproduction, is inspired by Theory of Evolution. Compared with 

some other heuristic rules, Genetic Algorithms could estimate a plenty of solutions. 

Since the process of information in neural network(NN) is difficult to understand, it 

is important to generate solutions automatically rather than only engineering by human 

brain. Thus, people could design a better neural network with assistance of GA. 

Crossover (i.e. mate) and mutate are both significant traits of Genetic Algorithm. 

Crossover could provide combination of fit genes from parents to child which usually 

better than individuals in generations before and mutate usually generate child which 

might be different with all the individual in population in last generation, which might 

lead to better solution [7]. 

To implement GA, we require a set of random numbers as “chromosome (also called 

DNA)” – usually built with binary numbers – to mask each subset. Only the feature 

whose counter point is “1” in chromosome could be kept to next step. Also, evaluation 

function is used to evaluate the fitness of chromosomes. A chromosome with better 



  3 

fitness (higher or lower in this own evaluation system) could be easier to be continued 

as parent, and then reproduce the child with better fitness. 

1.2 Preparation of raw dataset 

This report requires a dataset for classification. To keep the complexity of dataset, it is 

necessary to choose a dataset with at least 300 instances and a minimum 15 attributes. 

Since larger size of instance will increase the training efficiency of network, the author 

chooses “Mushroom” dataset on UCI with 8124 instances and 22 attributes. This 

dataset has shown the classification result on the first column before 22 attributes 

vectors as "e"(edible) and "p"(poisonous), so that a binary classification network could 

be built in this report.  

The problem we would solve is training a neuron network which accuracy is as high 

as possible for testing whether a mushroom has poison. The method to determine the 

performance of this network and prediction is estimating and comparing the training 

and testing accuracy. The higher the accuracy rate of testing is, the more accurate this 

classification network is. For training accuracy, this report would present a plot with 

the number of iteration epoch on x-axis and loss value (i.e. error) on y-axis. The 

function curve of this plot should rapidly decrease at the beginning, then the decreasing 

rate will be weakened as the epoch increasing to approach a stable loss value. 

To show the result of classification, the confusion matrix could be used in the 

estimation step. 

2 Method 

2.1 Load and process dataset 

The “Mushroom” dataset should be pre-processed before using as input. 

Firstly, transform all the data from characters to integers. 

Secondly, since only normalized value can be input as a dataset in this Linear Neural 

Network, normalizing these integer values to float values from 0 to 1.  

Thirdly, shuffling these data by instances (randomly change the order of row) to 

avoid using similar instance in some order. 

Next, randomly selecting parts of data as three different sets: 

- Training set (70% of data); 

- Testing set (15% of data); 

- Validation set (15% of data); 

Then, divide these three sets as 2 parts respectively:  

- input data (including 22 columns of attribute value); 

- target data (including the target value: edible or not). 

The last step before building is transform training/testing input and training/testing 

target as Tensor type. Otherwise, the network data structure in torch cannot input these 

data. 



4 Le Yang 

We can save these results as a .csv file so that it can be loaded then without 

transforming step. 

2.2 Preparing to build simple Neural Networks 

To build NN, “learning rate (=0.28, which is related to gradient descent)” and “Epoch 

(=2000, should be large enough, but should not too big to decrease efficiency of 

implementation)” should be defined by researchers. 

After setting parameters, the number of neurons in each layer should be defined 

initially. In this network, input neuron number should be 22(as the number of feature 

before implementing GA) and output should be 2(“0” as poisonous and “1” as edible). 

As the report noted before, number of hidden units is difficult to define before learning 

with network. Thus, assuming number of hidden neuron as 50, the Linear network could 

be built and initialized with Sigmoid activation function. 

Learning rate requires multiple times to test, so we can set it as a small number to 

observe the shape of function curve (x-axis: epoch times; y-axis: loss value), then 

increase or decrease it and observe again and again to select a fit value. 

2.3 Iterating to build temporary NN and process GA 

In this step, before the beginning of Genetic Algorithm procession, set all the important 

parameters like “Size of population (=15)”, “Crossover rate (=0.8)”, “Mutation rate 

(=0.01)” and “Number of generation (=80)” manually. 

Before the starting, randomly set some binary words respectively in a list (which 

length is equal to the number of features = 22) and then duplicate it with several times 

(equal to “Size of population”). 

For each individual chromosome in each generation, train a temporary neural 

network with “Epoch” times iteration independently. After masking training input set 

with chromosome, input the rest feature into temporary NN as patterns. After enough 

iterations, to avoid the overfitting or coincidence of dataset, we should test each neural 

network with validation set instead of using testing set (i.e. using test set to process this 

step is same as “cheating”) and then extract the “fitness” – which is usually decided by 

what kind of loss function (MSE or Cross Entropy) the neural network applied or only 

the accuracy.(This report applies accuracy as the result of fitness.) 

Holding the collected list of fitness until the iteration of population finished, we can 

process the chromosome population in genetic algorithm: 

· Selection: select the member of next population from the population before with 

their fitness. We choose proportional selection in this report. 

For everyone in selected population: 

· Crossover: produce offspring by recombining genes from parent individuals: 

· Mutation: probably exchange some of numbers on chromosome for someone to 

another binary number; 

· Replace: replace parents with offspring. 

Then finish this time of generation and start the next time until finish all the 

generations. 



  5 

After all the operation in this step, we can get a selected feature subset which is the 

best solution of the problems we solved (may not be optimal). 

2.4 Pruning training neural network 

2.4.1 Pruning Input neurons 

With the best chromosome masking we collected in 2.3, we could delete the redundant 

input neuron before building the final neural network. We should both reduce input for 

training input set and testing input set. 

2.4.2 Pruning Hidden neurons 

According to the method from the paper “Network Reduction Technology” [4] which 

was written by Gedeon and Harris in 1991, this report implements that pruning hidden 

neuron by comparing inner angles of each vector. As this paper presented, the 

distinctiveness of hidden neurons is determined from their output vector which 

processed by activation function after processing input data. In other words, we should 

get the output of first Linear layer (from input to hidden) processed by activation 

function and divide them by column as many vectors (100 vectors in our network) 

which size is [approximate 70% * instances number (8124)] as 1-dimention array. 

These vectors are used to calculate the inner angle of each pair of them. 

As the paper mentioned, neurons with short activation vectors in input space should 

be removed because they are recognized as insignificant. Since all the value of vectors 

are between 0 and 1, we should minus 0.5 for all of them to broaden the range of 

possible value to get angles from 0° to 180° instead of from 0° to 90°. Then all the 

inner angle of each pair of vectors can be calculate and stored into lists in Python. As 

the paper shown, all the pairs of neurons whose inner angle of vectors are larger than 

165° should be both removed. Then if there are some vector pairs whose inner angle 

are less than 15°, one of a them should be removed, and its value should be added to 

the other. We should note the pairs of neurons for both condition as two list. 

After selecting neurons, we should replace the weight of new neuron network which 

requires no more training. The step flow is following: 

- Calculate the number of hidden neuron in the new network. 

- Build a new linear network with same parameters of the original one except 

hidden neuron number.  

- Extracting the weight of Input-Hidden layer and Hidden-Output layer of original 

trained network.  

- Removing all the neurons whose angles are bigger than 165°  and merging 

neurons whose angles are smaller than 15° for both weight data.  

- Replace the both weights of new network and we can test it with pruned 

network. 



6 Le Yang 

 

Fig. 1. General Flow 

2.5 Network Testing 

Using test set to evaluate both the final NN and the pruned final NN. We can get the 

result and discuss it then. 

3 Evaluation, Results and Discussion 

3.1 Evaluation of Neuron Network 

An efficient neuron network requires a suitable learning rate value. As the report 

mentioned in stage 2, to get an appropriate learning rate, we should test different value 

again and again.  

If a too small value was chosen to build a neuron network, the accuracy might be 

lower than the best situation of network; If the value is too big, although the training 

accuracy would be presented as a big value, the testing accuracy would still worse than 

the best situation (i.e. it would be overfitting). 

The learning rate, as a hyperparameter which is hard to be determined, is a 

coefficient of gradient descent. Thus, the change of learning rate could adjust the 

gradient descent speed into a suitable range. The loss function cannot easily converge 

with too small value – difficult to descent to the bottom of gradient model – and it also 

could shake on y-axis violently because in gradient descent aspect, too big learning rate 

could let the object go through the bottom of gradient model. 



  7 

 

Fig. 2. A standard learning rate: learning rate = 0.18 

 

Fig. 3. Too large learning rate: learning rate = 1.8 

 

Fig. 4. Too small learning rate: learning rate = 0.018 

3.2 Result of Pruning  

To compare the result of pruning, we collect 10 sets of result of testing accuracy of 

comparing between original network and pruned network: 



8 Le Yang 

 Accuracy of 

training set 

Accuracy of 

testing set 

Accuracy of pruned 

testing set 

Number of pruned 

hidden neurons 

1 93.96% 93.26% 93.38% 93 

2 93.60% 94.25% 92.68% 89 

3 93.74% 92.70% 92.45% 91 

4 93.90% 93.61% 92.08% 92 

5 93.43% 93.68% 92.20% 90 

6 93.71% 93.57% 91.58% 92 

7 93.62% 94.03% 92.50% 96 

8 93.54% 93.35% 93.11% 91 

9 93.82% 93.95% 93.52% 96 

10 93.70% 92.88% 92.94% 90 

Table 1.  The comparation result of 10 set with 100 hidden neurons before pruning with 

learning rate = 0.18 and Epoch = 6000 

According to the result of Table 1, we can observe that all the accuracy here are over 

90%. Accuracy of training set are stable around 93.5%; Accuracy of testing set are 

similar as training with a little waving; Accuracy of pruned training set are usually a 

little lower than original testing result but sometimes bigger; The number of pruned 

hidden neurons are usually 5%~10% lower than original number. 

These result shows that the approprate pruning is useful to reduce the size of hidden 

layer. Although the accuracy could be still gently decreased, we pruned network with 

the lowest cost. Thus, this pruning method can be implemented for our dataset. 

Pruning hidden neuron with this method can really help us to find the minimal size 

of hidden neurons. Since the hidden neuron number is reduced, it seems also a good 

way for larger testing set in future.  

More importantly, this method can reduce the hazard of pruning instead of randomly 

deleting hidden neuron. For instance, we can reduce 10% of neuron with only 2% 

decrease of accuracy with this function, but if we try to reduce same number of neurons 

randomly, the accuracy might be declined by over 50% and the network would be no 

use.  

3.3 Result of Genetic Algorithm: 

 Acc of 

train set 

with GA1 

Acc of 

train set 

without 

GA 

Acc of 

test set 

with GA 

Acc of test 

set without 

GA 

Acc of 

pruned test 

set with 

GA 

Acc of 

pruned test 

set without 

GA 

1 90.21% 91.05% 90.99% 90.94% 90.41% 89.95% 

2 90.18% 91.09% 92.00% 90.62% 87.33% 85.51% 

3 86.95% 90.83% 87.28% 92.27% 80.96% 90.61% 

4 90.67% 91.45% 90.48% 89.82% 87.97% 85.51% 

                                                           
1 The control group without GA has same hyperparameters with other groups with GA.  



  9 

5 91.40% 91.50% 91.35% 91.59% 91.67% 91.78% 

Genetic Algorithm in this report has high time complexity. Therefore, we have to 

decline the Epoch from 6000 to 2000 (with learning rate = 0.28) to evaluate the 

performance of these instance. 

The 5 sets of result without genetic algorithm looks like similar which could fit to 

the conclusion we have got in 3.2. The other 5 sets experimental groups still shows the 

similar result, so it seems that pruning inputs with suitable feature selection cannot 

reduce the accuracy in most of times – it seems a little more efficient than the control 

groups without GA which means that fit feature combination could improve the 

efficient of neural networks. 

3.4 Comparing with other researchers 

Since the results in this report were made by a simple linear network (and pruned by a 

simple method which was provided in 1991[4]), we have enough reason to believe that 

there are many papers which have higher accuracy as result with the same dataset  

“Mushroom”. 

This report choose the result from the paper “Extraction of crisp logical rules using 

constrained backpropagation networks” [8] which has published in 1996. It provides 

four different results which collected by four different logical rules of selecting input 

attributes. The result of them are respective as 98.52%, 99.41%, 99.90% and 100.00% 

which are much bigger than the result we collected before as 93.26%. 

However, since the result showed that GA could select a better combination of 

features automatically, if we have enough time to iterate the generation, we might find 

the same combination like the manual selection from the paper written by Duch et al[8]. 

The other reason of this phenomenon might be the difference of network 

architecture. In this paper, researchers use MLP2LN 2 and Structural Learning with 

Forgetting (SLF) method [9] to build a more complex network than the simple linear 

back-propagation network we built.  

As this paper provided, the major reason might be the selection of input set. In our 

implementation, all the 22 attributes were input into the simple network. Although the 

more attribute can usually support a better accuracy result, if a good combination of 

input was found for some dataset, the accuracy would become almost perfect. However, 

not all the attributes are obvious enough like distinguish poisonous mushroom (like the 

100% accuracy combination is habitat and cap-color). 

4 Conclusion 

Although the result of pruning is representative enough without influence from other 

factors, the accuracy is also shown dissatisfactory since the neuron network in this 

report is too simple. Fortunately, the pruning is useful for reduction of hidden neuron 

with a little cost of accuracy. This method is too old, but reduction of network is still 

                                                           
2 a smooth transition from Multi-Layer Perceptron to Logical Network 



10 Le Yang 

researched by people at present. For instance, Zeng and Yeung provided a paper as 

pruning hidden neuron with a quantified sensitive measure [10]. Pruning could be 

always a useful topic in neuron network, because people should process enormous 

datasets in future which require much more efficiency. 

Genetic algorithm is potential to automatically generate solutions. Although it could 

cost plenty of time to select features initially, researchers could get much more accurate 

result with less input of features in future works – eliminate redundant data could make 

the programs easier. In addition, genetic algorithm cannot only be used to select feature, 

but it can also select hyperparameters (hard to predict) without the planning of people. 

In other words, we can also prune hidden neurons with GA-ANN[7]. 

5 Reference 

1. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representations 

by error propagation (No. ICS-8506). California Univ San Diego La Jolla Inst for Cognitive 

Science. 

2. LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. E., & 

Jackel, L. D. (1990). Handwritten digit recognition with a back-propagation network. In 

Advances in neural information processing systems (pp. 396-404).4. Gedeon, T. D., & Harris, 

D. (1991). Network reduction techniques. In Proceedings International Conference on Neural 

Networks Methodologies and Applications (Vol. 1, pp. 119-126). 

3. Mehedi, I. M. (2017). Time Varying Back Propagating Algorithm for MIMO Adaptive 

Inverse Controller. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER 

SCIENCE AND APPLICATIONS, 8(2), 370-377. 

4. Gedeon, T. D., & Harris, D. (1991). Network reduction techniques. In Proceedings 

International Conference on Neural Networks Methodologies and Applications (Vol. 1, pp. 

119-126). 

5. Sietsma, J., & Dow, R. J. (1988, July). Neural net pruning-why and how. In IEEE international 

conference on neural networks (Vol. 1, pp. 325-333). IEEE San Diego.  

6. Kermani, B. G., White, M. W., & Nagle, H. T. (1995, September). Feature extraction by 

genetic algorithms for neural networks in breast cancer classification. In Engineering in 

Medicine and Biology Society, 1995., IEEE 17th Annual Conference (Vol. 1, pp. 831-832). 

IEEE. 

7. Ahmad, F., Mat-Isa, N. A., Hussain, Z., Boudville, R., & Osman, M. K. (2010, July). Genetic 

Algorithm-Artificial Neural Network (GA-ANN) hybrid intelligence for cancer diagnosis. In 

Computational Intelligence, Communication Systems and Networks (CICSyN), 2010 Second 

International Conference on (pp. 78-83). IEEE. 

8. Duch, W., Adamczak, R., & Grabczewski, K. (1997). Extraction of crisp logical rules using 

constrained backpropagation networks. 

9. Ishikawa, M. (1996). Structural learning with forgetting. Neural networks, 9(3), 509-521. 

10. Zeng, X., & Yeung, D. S. (2006). Hidden neuron pruning of multilayer perceptrons using a 

quantified sensitivity measure. Neurocomputing, 69(7-9), 825-837. 


