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Abstract. In this paper, we focus on two types of English letter recognition tasks: spoken English letter
recognition and handwritten letter recognition. We employ fully connected neural network approaches to resolve
the spoken English letter recognition task on a real word datasets, and we use convolution neural network to
resolve the handwritten letter recognition task on EMNIST dataset. For both tasks we apply the same feature
compression technique to reduce the size of neural networks. We conduct extensive experiments to examine
the effectiveness of our compression technique. We observe a significant improvement on training time and the
size of neural network while keep the performance at same level. For spoken English letter recognition task,
we report a test set accuracy of 94.23% for our neural network performance and the compression technique
reduces the training time by 20.95%; for handwritten letter recognition, we report a test set accuracy of 92.34%
and the training time reduced by 30.40%.
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1 Introduction

Letter recognition is a fundamental task in machine area. Techniques of recognizing letters from speech signals or
images can be furthered used in recognition tasks for extracting words or sentences from speech or image data.
Automatic speech recognition is one of the challenge tasks in the field of machine learning. It is the foundation of
many intelligent systems, such as voice search, speech-to-text applications and automated simultaneous interpre-
tation. In this work, we focus on the task of automatic recognition of spoken English letters. The spoken letter
recognition task is non-trivial and even challenging due to the fact that the phonetic similarity among some English
letters, for example, ’B’ vs. ’P’ vs. ’D’. In this task, we focus on the automatic spoken English letter recognition
task. Handwritten letter recognition is an essential technique which provides machine the ability to retrieve text
information from images. For both letter recognition tasks, the recognition algorithms should be resistant to the
possible transformation or variance in real world data caused by the personal differences, and therefore can be quite
challenging for traditional algorithms.

A number of works employ neural networks to address the character recognition problems [2, 7, 17, 14, 15]. While
the use of deep neural networks, such as LeNet-5 [10], a type of Convolutional Neural Networks (CNN), greatly
improves the accuracy of the task, the computational performance, for example the training time, becomes another
emerging issue for training a neural network, especially for the deep neural networks. Some techniques have been
proposed to reduce the training time of a convolution neural network. For example, pooling, weight sharing and
feature selection [18, 16]. In this work, we employ an input compression technique to reduce the size of neural
networks and further reduce the training time of networks. We apply our input compression technique to the spoken
and handwritten letter recognition tasks, and we also conduce extensive experiments to examine the effectiveness
of our compression techniques.

For spoken English letter recognition task, first we employ a fully connected feed-forward neural network with
two hidden layers to resolve the recognition task and examine its performance on the dataset we choose. Then, we
also employ a neural network compression encoding technique to reduce the size of neural network while keep the
recognition performance at a similar level. For handwritten letter recognition task, we employ a convolution neural
network with two convolution layers and two fully connected layers to resolve the recognition problem, and test the
model on EMNIST [4] dataset. Similar to the spoken letter recognition task, we apply the same input compression
technique to reduce the size of network and the training time.

We implement our neural network and encoder with PyTorch and perform extensive experiments to examine the
performance of our networks. For spoken letter recognition task, we report that our fully connected feed-forward
neural network achieves an average accuracy of 93.59% on the UCI’s ISOLET spoken letter recognition dataset [5],
which is slight lower then the accuracy reported on the same dataset with similar approaches by [6]. We also report
that our compression encoder reduces the size of our recognition network by 84.64% (from 729 units to 112 units)
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and reduces the training time by 20.95% while keep the recognition performance at a similar level. For handwritten
letter recognition task, we report our test accuracy of 92.64% on EMNIST letter dataset. The result outperforms the
result of 85.15% by using a fully connected neural network, which is reported by [4]. We also report that by applying
the input compression, the training time of network reduces by 30.40% (from 92.03 seconds to 64.05 seconds) while
the test set accuracy is kept at a similar level.

2 Methods

The letter recognition task can be modeled as a multi-class classification task. For spoken letter recognition task,
the predictor receives a feature vector (of length 617, in the ISOLET dataset we use) as an input and output a
prediction vector of length 26 with each dimension of the output vector represents an English letter. For handwritten
letter recognition, the input feature is a gray scaled image (28 ∗ 28 in EMNIST dataset) and the output is the same
to spoken letter recognition task.

We now introduce the structure of our neural network for the spoken and handwritten letter recognition tasks
and describe the approaches we employed to reduce the size of neural network to improve the computational
performance.

2.1 Feed-forward Neural Network for Spoken Letter Recognition

We construct a simple fully connected feed-forward neural network for the spoken letter recognition task. Our
network contains two hidden layers with 64 and 32 hidden units respectively. The input layer contains 617 input
units and the output layer has 26 units. We use Rectified Linear Units (ReLu) [13] as activation functions in both
hidden layers and the input layer. The loss function we choose is cross entropy error function. The choice of cross
entropy error function is based on the classification nature of our recognition task. We perform a mini-batch [9]
training to train our network to introduce noisiness considering the non-convex property of our task but still keep
acceptable computational performance. The mini-batch size is set to 20. We train our neural network on the ISOLET
dataset for 50 epochs with a learning rate of 0.01. We note that although the neural network we construct for spoken
letter recognition task is straightforward comparing to modern neural network structures which have achieve good
results on chronological data, for example RNN [12], the network achieves an acceptable accuracy of 93.59%.

2.2 Convolution Neural Network for Handwritten Letter Recognition

We use a convolution neural network (CNN) for the handwritten letter recognition task. The network contains
two convolution layers followed by two fully connected layers. The fist convolution layer uses 16 7 ∗ 7 kernels and
the second convolution layer uses 32 7 ∗ 7 kernels. After each convolution layer, we use a average pooling layer to
sub-sample the output data. The following two fully connected layers receives the outputs of the second convolution
layer and map the output to 4096 and 26 dimension vectors respectively. The output layer contains 26 units (1 for
each letter). Similar to the spoken letter recognition, we use ReLu as activation functions for convolution layers
and cross entropy as error functions. However, for the fully connected layers we use sigmoid activation functions.
The reason is that though ReLu can avoid gradient vanishing problem, it still introduces other issues to training.
For example, the dead neurons [11] and bias shift [3] problems. For the fully connected layers near the output,
sigmoid activation functions can avoid the shortcomings of ReLu and will not cause too much gradient vanishing.
The mini-batch size is set to 100 because EMNIST can provide sufficient data now. We train our neural network
for 30 epochs with a learning rate of 0.01. This networks finally achieves an acceptable test set accuracy of 92.34%.

2.3 Compression Encoder for Reducing Feature Dimension

We now introduce our compression encoder for reducing the dimension of input feature vectors and the size of
neural network for the recognition task. We notice during the experiments with our recognition network that our
original structural design of the neural network used for spoken letter recognition contains more then 600 units on
at the input layer while the first hidden layer contains only 64 hidden units and the other hidden layer contains
only 32 hidden units. Another observation comes from the manual inspection on EMNIST dataset. We notice that
the while each image (28 ∗ 28) is gray-scaled and contains a letter at its center, it still contains a lot of unnecessary
information except for those we are concerned (the letter itself in our task). For example, we can resize the image to
20 ∗ 20 and still recognize the letter shown by the image. These observations imply that variables in feature vectors
are highly correlated and contain a large amount of redundant information. Though our neural network solution are
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resistant to this redundant, which means this will not introduce a accuracy performance issue, a high dimensional
input vector will increase the size and complexity of the neural network and may cause a significant computational
issue.

With the intuition that the dimension of input feature vectors can be significantly reduced, we design and
implement a encode to compress the input vectors and use a simplified neural network with the encoded feature
input vectors to do the spoken letter recognition task. We first introduce the encoder we use to compress the feature
vectors.

Compression Encoder The idea of compressing the input feature vectors to reduce the complexity of neural
networks comes from the image compression work in [8]. In [8], an image of 64 × 64 is divided evenly in to 16 non-
overlapping patches with the same size and each image patch is represented by a vector of length x. The original
image then can be represented by a vector (or matrix) with 16x elements. The key idea of compression in [8] is to
find a low dimensional representation for each image patch, i.e. to reduce x.

The compression is accomplished by a neural network with 256 (16 × 16) input, a hidden layer with x hidden
units and an output layer with 256 units. The compressor (the neural network) is trained with each image patch
as a single input and at the same time, as the output. When the training has finished, we can easily compress an
image patch by use the image as input to the network and the value of hidden layer (size of x) is the compressed
representation of the input image patch. This compression technique helps reduce the complexity of the image in [8]
and we use the same technique in our letter recognition tasks to reduce the size of input feature vector and the
complexity of our recognition neural network.

Compression Encoder in Spoken Letter Recognition Task We now introduce the structure of our encoder
used in spoken recognition task to reduce the dimension of input feature vectors. For implement convenience, we
construct a neural network with two parts: the encoder and the decoder. The encoder corresponds to the input layer
and the hidden layer of the compressor in [8] while the decoder corresponds to the hidden layer and the output
layer of the compressor.

The encoder constitutes of an input layer of size 671, the original size of feature vectors of ISOLET dataset, a
hidden layer of length 200 and then an output layer of length 64. The decoder uses a reversed structure of encoder:
input layer of size 64, a hidden layer of size 200 and the output layer of size 671. The compressor can be considered
as a network connecting the encoder part and the decoder part: it uses the output of encoder network as the input
of decoder network. To train the compressor, we split the training dataset and uses 20% of training data to train
the compressor. This part of data then will not be used in the afterwards training and testing of the recognition
neural network.

Compression Encoder in Handwritten Letter Recognition Task The encoder we use in handwritten recog-
nition task is similar to the one we introduced previously. We use two parameters: input size and target size to
control the size of an encoder. The input size indicates the width of image we want to compress while the target size
is the width of image after compression. We note that since we are processing images in this task, the input to
encoder will be first flattened to a vector before being fed to the encoder and the output of encoder will be reshaped
before again used by a CNN. For this task, we randomly pick 5% of instances from training dataset to train the
encoder, and as we did in spoken letter recognition task, the instances used to train the encoder will not be used in
neither training or testing of CNN.

2.4 Neural Network with Reduced Features for Recognition Tasks

We now introduce our approaches to apply the compression method to reduce the dimension of the input feature
vectors and the modification we make to the original neural network used in letter recognition tasks and describe
the whole training and testing procedure with this compression extension.

Feature Reduction for Spoken Letter Recognition

– Compressor training
The first step is to train the compressor. We randomly pick 20% instances from out training dataset and remove
them from the training set. We use these data instances as the input and output of our compression encoding
neural network (the compressor). We then train our compressor by mini-batch method with the same mini-batch



4 Yinshuo Bai

size of 20 for 150 epochs. After the compressor is trained, we run separately the encoder part of the compressor
on the remaining training data as well as the test set. As we discussed in previous sections, the encoder part of
a compressor can be used as a standalone neural network which takes the original representation of a feature
vector as input and the output of the encoder part gives the compressed low dimensional representation of the
original feature vector.

– Simplified Neural Network for Recognition Task
Since the input feature vectors are compressed into a low dimensional representation, we now can reduce the
number of units in input layer and simplify the structure of the original neural network. Our simplified neural
network contains only one hidden layer with 32 hidden units, which is just the second hidden layer in our original
network. The simplified network has 64 inputs, which is the dimension of our compressed representation for
features, and the output of the simplified neural network remains to be 26 because we have 26 classes for our
classification task.

Feature Reduction for Handwritten Letter Recognition

– Compressor training
The training of encoder is similar to the process described in Section 2.4. We first randomly pick 5% instances
from out training dataset and remove them from the training set. We use these data instances as the input and
output of our compression encoding neural network (the compressor). We then train our compressor for 300
epochs. After the compressor is trained, we run separately the encoder part of the compressor on the remaining
training data as well as the test set to generate the new dataset which is used to train the reduced CNN later.

– Simplified Neural Network for Recognition Task
By using the encoder we can compress the input image to a smaller one. We have tried to compress the original
image to different size and train with CNN. As for the CNN, we remove the two pooling layers in the original
implementation to compare the effect of pre-training and in-training compression. The rest settings of CNN
remains the same as the original implementation we describe in Section 2.2.

3 Results for Spoken Letter Recognition

In this section, we describe the experiments we conduct to determine the performance of the neural networks we
designed for spoken letter recognition task. For consistency and convenience, we refer to the original neural network
for spoken letter recognition task as net-671 and to the simplified neural network as net-64. The neural network we
use to compress the feature vectors will be referred to as compressor.

3.1 Experimental Setup

We implement the three neural networks discussed above, namely net-671,net-64 and compressor, in PyTorch. All
our experiments, including training, compressing and testing are run on a NVIDIA GTX 1060 GPU. We will use
the training time of neural networks as the measure of computational performance.

Dataset The dataset we use to train and test our networks is UCI’s ISOLET [5] dataset for spoken English letter
recognition task. The dataset contains 7797 instances from 150 subjects who spoke the name of each letter in the
English alphabet twice. The subjects are grouped into 5 groups of 30 speakers. Four groups out of five are used as
training set and the other group is used for testing. As we mentioned in Section 2.4, we need separate data to train
our compressor. Therefore, we split the original training data (data of 4 groups) into two parts: 20% of the training
data are used to train the compressor and the rest 80% of data are used as normal training set to train net-671 and
net-64. Each instance in the original dataset contains 617 features. The features include statistics of the speakers’
voice records, including spectral coefficients, contour features, etc. However, the exact order of appearance of the
features is not known. Other detailed information can be found at UCI’s website [1].

Performance Measure We collect two types of statistics during the experiments to measure the performance of
our neural networks. First, we collect the prediction accuracy of net-671 and net-64 on test set after each training
epoch. Then we also measure the total time used in training the networks. For net-671, we collect the total time
spent in 50 training epochs and for net-64, we collect the total time spend in training net-64 and the training of
compressor.
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3.2 Experimental Results

We now show our experimental results on test set accuracy and average cross entropy loss after each training epoch
and the training time. Figure 1 shows the average cross entropy loss (left axis) and prediction accuracy (right axis)
after each training epoch for net-671 and net-64. As shown in figure, both net-671 (93.59%) and net-64 (94.23%)
achieve high accuracy of over 90% on the test and net-64 gain a slightly higher scores on accuracy. Figure 1 also
shows that net-64 converges faster then net-671. This experimental result indicates that our reduction method
applied to simplify the neural network for the spoke letter recognition task will slightly improve the convergence
speed and the accuracy on test set.

Fig. 1. Test set accuracy and loss for net671 and 64

We also report that the we observe an significant improvement in computational performance. The training
time of the recognition network is reduced by 20.95% (15.36 seconds for net-64 and 19.43 seconds for net-671 ). We
note that for the measure of training time, we also include the time for compressing the original feature vectors in
the training time of net-64. This suggests that our reduction approach can significantly improve the computational
performance and slightly improve the test set accuracy.

Accuracy Comparison to Other Work The neural network we designed works well on the ISOLET dataset. We
achieve an accuracy of 94.23% with net-64 on test set. Other works on this recognition task with the same ISOLET
dataset reports a slightly better accuracy of 95.7% using a neural network with much more units (695) than net-64
(112). This shows that our reduction achieve a good performance while significantly improves the training efficiency.

4 Results for Handwritten Letter Recognition

In this section, we describe the experiments we conduct to determine the performance of the CNN for handwritten
letter recognition. For consistency and convenience, we refer to the original CNN as cnn-pooling and to the CNNs
without pooling layers whose input image has width of n as cnn-n. For example, if we compress the input images to
size 14 ∗ 14, we will refer to the CNN used to classify the images as cnn-14. The neural network we use to compress
the image will be referred to as encoder.
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4.1 Experimental Setup

We implement in PyTorch the neural networks cnn-pooling, encoder and cnn-n for n = 24, 22, 20, 18, 16, 14. As the
previous experiment, all our experiments are run on a NVIDIA GTX 1060 GPU. We will use the training time
of neural networks as the measure of computational performance and the accuracy and average loss on test set as
performance measures.

Dataset We use EMNIST letter dataset [4] to train and test our model. The dataset contains 26 classes and 145,600
samples. 124,800 of them are used as training data and the rest 20,800 are testing samples. The data samples are
distributed evenly over all classes. The label of each data sample is a letter and the features of the data sample
is an image of size 28 ∗ 28. We set the mini-batch size to 100, and therefore there would be 1248 mini-batches for
training dataset in total. Other details of the dataset can be found in [4].

Performance Measure We use the same performance measure as the spoken letter recognition task. We collect
the prediction accuracy on test set after each training epoch as well as the training time of cnn-pooling and of all
cnn-ns. We also collect the training time of encoder network.

4.2 Experimental Results

We now show our experimental results for handwritten letter recognition task. We describe our results in terms of
test set accuracy and the training time of networks to examine the effectiveness of our networks designed for letter
recognition and input compression respectively.

Accuracy on Test Set Figure 2 shows the average entropy loss (left axis) and test set accuracy (right axis) after
each training epoch for cnn-pooling and cnn-14. These two networks has the same number of parameters (664,923
for both). The difference is that cnn-pooling performs average pooling after each convolution layer while cnn-14
uses no pooling technique. As shown in figure, both cnn-pooling and cnn-14 achieves high accuracy of over 90% on
test set. However, cnn-pooling performs slightly better than cnn-14 on this dataset. The same task is accomplished
in original EMNIST work paper by using a fully connected neural network, and the authors report a test accuracy
of 85.15%. This also shows the advantages of CNN in retrieving information from images.

Fig. 2. Performance of cnn-pooling and cnn-14
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Fig. 3. Test set accuracy using CNN without pooling when compressing the image input into different size.

We also train different encoders to compress the input images and then use the compressed images to train
and test the CNN with reduced input size. Specifically, the original image (28 ∗ 28) are compressed to n ∗ n where
n = 24, 22, 20, 18, 16, 14. Figure 3 shows the prediction accuracy on test set for different compressed image input
size. As we can see in the figure, all the cnn-n achieves a test accuracy over 90%, which is quite close to the result
we got from cnn-pooling.

Training Time and Size of Network In the history of CNN, the application of the technique is always con-
strained by computational resources [10]. Though techniques such pooling are used to reduce the requirement of
computational resources, training a CNN can still be very computational expensive. One reason for this computa-
tional expensiveness is that the size of normal representation of images increases at n2 speed while the width of
image n increases. As we have demonstrated in Section 3, the input compression technique can significantly reduce
the training time of neural networks, and we now describe our experimental results for training time for handwritten
letter recognition tasks using CNNs with different size of inputs.

Table 1. Number of parameters of different CNN

Input image width Using pooling 24 22 20 18 16 14

# Parameters in CNN 664,923 19,015,003 13,247,835 8,529,243 4,859,227 2,237,787 664,923

We compare the number of parameters in CNN when using pooling technique and when compressing the input
images to a certain width. The numbers of parameters of CNNs are shown in Table 1. As we can see in the table,
two layers of pooling reduces the number of parameters to the same number of parameter in cnn-14. Figure 4 shows
the training time of each CNN. The red line indicates the training time of cnn-pooling while the blue bar suggests
the training time of each encoder and the orange bar shows the training time of each cnn-n. As we can see in the
figure, the training time of cnn-14 (44.91 seconds for CNN, 19.14 seconds for encoder, 64.05 seconds in total) is
significantly smaller (reduced by 30.40%) than the training time of cnn-pooling (92.03 seconds) even though they
have the same number of parameters. This suggests that compressing the input image can achieve the same result as
pooling in reducing the size of network, and compressing can save more training time than pooling. The reason for
saving more training time can be that pooling needs more logical operations, which can break the parallelism. This
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Fig. 4. Training time of CNN without pooling when compressing the image input into different size.

can significantly slow down the training speed, especially on devices like GPUs. We also note that if we compress
the input images to 16 ∗ 16, the cnn-16 will have 2, 237, 787 parameters, but the training time is quite close to that
of cnn-pooling. By comparing the test accuracy, we find that cnn-16 achieves an accuracy of 91.36%, which is close
to the accuracy of 92.34% by cnn-pooling. This results shows a shortcoming of our input compression technique:
though the input compression can significantly reduce the training time of CNNs, the compression may be lack of
locality, which is essential for extracting information from images, and therefore the accuracy of neural networks
may decrease due to the lost or indistinguishable information.

5 Discussion

Neural network is a powerful machine learning technique to resolve the real word problems. The structure of a
neural networks can affect the performance and computational cost significantly and the features we used as input
to the neural networks can also have a significant impact on the performance of network. Our experiments shows
that though neural networks can be resistant to the redundant information contained in the input features, the high
dimensional feature vectors will introduce additional complexity to the structure of neural networks, which may
further cause computational issues. The computational overhead introduced in this case is generally hard to identify
because the performances on other aspects, for example prediction accuracy, may not be impacted significantly. From
information theory perspective, the encoder part of our compressor or encoder removes the redundant information
in features of the dataset and therefore increases the entropy of the training data, which makes the training more
efficient. However, as we discussed in Section 4.2, a naive compression method may make the information in original
data lose or become indistinguishable.

6 Conclusion and Future Work

In this paper use neural networks to resolve two letter recognition tasks: spoken English letter recognition and
handwritten letter recognition. For spoken letter recognition, we design and implement a fully connected feed-
forward neural network to resolve the English spoken letter recognition task. We conduct extensive experiments to
measure the performance of neural network and other techniques we introduce and implement. The experimental
results shows that this neural network achieves a test set accuracy of 93.59%. We then apply a feature compression
on the dataset to reduce the dimension of input feature vectors. Our compressor reduces the dimension of input
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feature vectors by 90.5%. This compression technique slightly improves the test set accuracy from 93.59% to 94.23%
and reduce the training time of the network by 20.95%. We also compare our reduced neural network net-64 with
the one solving the same problem on the same dataset [6]. The experiments shows that net-64 can achieve a similar
accuracy but is much smaller in size and also should have a better performance in training time.

For handwritten letter recognition task, we design and implement convolution neural networks to solve the
problem. We also apply the input compression technique to reduce training time and network size, and conductive
extensive experiments to examine the effectiveness of our techniques. We report a test set accuracy of 92.34% on
cnn-pooling on EMNIST letter dataset while the authors of the dataset reports an accuracy of 85.15% using a
fully connected neural network. We train and test different cnn-n networks for n = 24, 22, 20, 18, 16, 14. From the
experimental results we find that our technique can reduce the training time by 30.40% by compressing the input
and reduce the size of CNN to the size of cnn-pooling while only make the accuracy slightly decrease.

From a information theory perspective, our compressor removes the redundant information contained in dataset
and increase the entropy of the training data. A reasonable compression of input features can help with computa-
tional issues while keep the performance at a similar level. Our experimental results also support this. However, the
compressor is still designed by human with the knowledge from dataset. An interest future work can be if there
exists a theoretical boundary of such compression and whether we can learning from the data automatically and
build an adaptive approach to design such a compressor.
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