
Reducing oversized neural networks using sensitivity

Piyush Amritlal Gupta
College of Engineering and Computer Science, Australian National University

u6476509@anu.edu.au

Abstract. In this paper, we will develop an over-sized single layer neural network that would solve a
classification problem, and apply a pruning method called sensitivity to reduce the size of the model. Extending
the similar approach, we would be adding more layers to the network to make it a deep learning model and
apply the same pruning methods on each layer. Although the pruning can reduce the accuracy of the network,
retraining the network could increase the accuracy drastically and provide similar results as its original over-
sized network.

Keywords: Neural Networks, Image Segmentation, Classification, Network Reduction, Sensitivity.

1 Introduction

Feed-forward neural networks with error back propagation are used to solve a variety of classification
problems. But one of the biggest challenges while designing these types of neural networks is that the size of the
network cannot be calculated accurately. The number of neurons for input layer can be guessed from the number
and type of inputs, and similarly the number of neurons in the output layer is calculated from the number of classes
that the network would divide into [2]. But the real problem arises when selecting the number of neurons for the
hidden layer.

 Generally, the number of neurons for the hidden layer is guessed and randomly taken. If the network is
not learning, then we can just increase the number of neurons in the hidden layer, ranging from single to up to
10% of original neurons and even doubled if necessary [2].

But most of the times the number of neurons for the hidden layer are taken higher than required, because
there is a possibility that the underestimated network may be too small and never learn the problem at all [4]. On
the other hand, an oversized network may provide faster learning rate [4]. Then once the network has been trained
one by one the neuron is removed while at the same time looking after that the accuracy of network does not fall.

This paper works on creating two oversized neural networks, one being a simple two-layer feedforward
neural network, and another being a multi-layered artificial neural network based on the former model, which
would be referred as deep neural network from here on. One of the network reduction algorithms will be applied
on both the networks, and analyse on how well the algorithm works on different models.

2 Data Set

The data set for this paper was taken from UCI repository [8]. The data is referred as ‘Image
Segmentation Dataset’, which was made by Vision Group at University of Massachusetts in 1990. All the
instances were drawn randomly from a database of 7 outdoor images [8]. The images were hand segmented for
classification of each pixel and each instance is a 3x3 region [8].

It’s a multivariate dataset used for classification problem. It consists of 2310 instances, which have
already been divided into 210 training set, 2100 testing dataset and 19 continuous attributes. The information of
each attribute can be given as follows as per the UCI website [8].

The data will help in identifying the pattern in one of the seven classes – brickface, sky, foliage, cement,
window, path or grass.

The dataset was chosen because high number of instances and attributes. It has 19 continuous attributes
and no missing values. It has high number of web hits on UCI repository [8] and has been referred by many
websites. No pre-processing on inputs were necessary. All the data are continuous and easily usable in the neural
network.

 Although 210 instances of the training set are sufficient for learning of two-layer neural network, it is
far too less for a deep-learning network. So we interchanged the datasets for our multi-layer model, that is the
2100 instances that were originally meant for testing was used for training and the other 210 instances of training
set were used for testing.

3 Two-layer Neural Network

3.1 Proposed Model

The two-layer neural network designed to process this dataset has 19 neurons in the input layer based on
the number of attributes, 50 neurons in its single hidden layer which were decided randomly based upon the size
of the dataset and 7 neurons in output layer based upon its classes. The output will be one of the seven classes that
the network will segment the pixel into. Standard back-propagation was applied to the system with sigmoid
activation function.

Cross entropy loss method to calculate the loss. Since it is a classification model, the cross entropy would
be the most efficient and simple method to calculate the loss [1]. The cross entropy loss function can be given as
[7]

The optimiser that we chose was stochastic gradient with learning rate of 0.01.

3.2 Training and Testing Accuracy

 The initial weights are assigned random values and using the gradient descent method, the weights are
adjusted after every epoch until the loss reaches to minimum possible value. After varying different number of
epochs for training, it was found that 4000 epochs were good enough for our network to learn and not cause any
overfitting. The graph between loss to number of epochs has been given in Figure 1.

Figure 1. Graph between loss rate (y-axis) vs number of epochs (x-axis). As the number of epochs tends to
infinity, the loss rate tends to zero, but never truly reaches to zero.

 For each class, there are 30 instances available in the training dataset and 300 instances on testing dataset
[8]. Therefore, for seven classes, overall 210 classes are available for training and 2100 for testing.

The overall accuracy of our training dataset of 210 instances was found around 91.43%, whereas the
testing accuracy was around 87.81%. The results of both, training and testing has been given in Table 1.

Table 1. Results of the classification by Two Layer Network.

Classes Number of instances identified
correctly in training (out of 30)

Number of instances
identified correctly in
testing (out of 300)

Brickface 29 293
Sky 29 294

Foliage 26 244
Cement 24 196
Window 24 224

Path 30 293
Grass 30 300
Total 192 (210) 1844 (2100)

4 Deep Neural Network

4.1 Proposed Model

 The deep neural network is nothing but artificial neural network with multiple hidden layers. Using the
above developed two-layer neural network, we added two more hidden layers. So overall our deep neural network
has one input layer with 19 neurons, three hidden layers with different number of neurons in each layer (50 in first
hidden layer, 30 in second and 60 in third) and one output layer with 30 neurons.
 One problem with learning in multi-layer model with gradient-based learning methods and
backpropagation is that the gradient of the error function that gives an update to each weights can be vanishingly
small. This could refrain the weights from changing weights and restrict the network from learning. This is called
vanishing gradient problem.
 This problem was observed even in our deep neural network. Our model was only able to provide up to
15% accuracy only. There are various suggested methods available to solve this vanishing gradient problem. One
of the methods is using rectifiers for activation functions.
 One such rectifier is Rectified Linear Unit or ReLU. Its function can be given as

ReLU(x) = max (0,x)
 We tried using ReLU instead of existing sigmoid function from previous model. It did help in solving
out vanishing gradient problem and our network started learning just fine.

4.2 Training and Testing Accuracies

 Our dataset had 210 instances for training, which is far too less for our deep neural network to learn
from. So we interchanged the datasets, and 2100 instances that were originally intended for testing was now being
used for training and vice versa. 4000 epochs were fat too less from our previous model, and so we kept on
increasing the number of epochs for which the network was trained for, and finally decided to settle for 8000
epochs.
 Our deep neural network had training accuracy of about 89.95%, which is same as that of our two-layer
network. Considering the already high accuracy our previous model, there wasn’t much scope in improvement in
training. All it means is that our network is training just as well if not better. Table 2 describes the accuracy for
each class.

Table 2. Results of the classification on training by Deep Neural Network.

Classes Number of instances identified
correctly (out of 300)

Number of error
(loss)

Percentage Error
(loss)

Brickface 294 6 2
Sky 293 7 2.33

Foliage 265 35 16.6
Cement 227 73 11.67
Window 220 80 26.67

Path 290 10 3.33
Grass 300 0 0
Total 1889 (2100) 211 10.05

 The graph between loss and number of epochs for our deep neural network can be given in Figure 2. It
is not as smooth as our two-layer model, but it shows that our data is not over-fitting.

Figure 2. Graph between loss rate (y-axis) vs number of epochs (x-axis) for deep neural network. As the number
of epochs tends to infinity, the loss rate tends to zero, but never truly reaches to zero.

Testing accuracy had slightly increased, close to 89.05% as compared to 87% in our previous model. Table 3
shows the testing accuracies for every class

Table 3. Results of the classification on testing by Deep Neural Network.

Classes Number of instances identified

correctly (out of 30)
Number of error

(loss)
Percentage Error

(loss)
Brickface 29 1 3.3

Sky 30 0 0
Foliage 25 5 16.6
Cement 24 6 20
Window 23 7 23.3

Path 30 0 0
Grass 30 0 0
Total 191 (210) 19 9.04

 Thus, our deep neural network is working well for our classification problem.

5 Case Study – Support Vector Machine

 Another way of classifying the given data is Support Vector Machine, which has already been done by
James [5] on the data set that we chose. The error calculated by him is given in the Table 4 [5].

Table 4. Results on testing data set using Support Vector Machine (SVM).

Classes Number of test

patterns in the
classes

Number of
error (loss)

Percentage
Error (loss)

Brickface + Cement 600 18 3
Brickface + Cement +Foliage 900 40 4.4

Brickface + Cement +Foliage + Grass 1200 43 3.6
Brickface + Cement +Foliage + Grass +

Path
1500 60 4

Brickface + Cement +Foliage + Grass +
Path + Sky

1800 62 3.4

Brickface + Cement +Foliage + Grass +
Path + Sky + Window

2100 180 8.6

 We can observe that model developed by James [5] performs slightly better than our two-layer network
and deep neural network. It is hard to say which model is better, as it would be like comparing apples with
oranges. SVM is another supervised learning model that is being used to solve classification problem in this
case. Some of the advantages of SVM is that it avoids over-fitting of the data, which is being handled by us in
our model. So overall our models are aligned with the SVM model made by James [5].

6 Pruning

 The problem with error-back propagation is that the efficient structure of the network cannot be
defined before the training starts [2]. The input and output neurons can be easily estimated based on the input
attributes and output classifiers, but deciding the number of neurons for the hidden layer can be a bit difficult
[2].

That is why it is the best preferred to begin with a number more than the required amount. Even for the
network model that was used for this research paper, the number of neurons in hidden layer were “guessed” and
started with 50 neurons. It is possible that the network would perform just as well or even better with lesser
number of neurons in hidden layer. Thus, it is a good practice to find the optimum size of the network not only
to improve the efficiency, but also to record the minimum number of hidden neurons required next time the
network will be used for classification [2].

The weights of the back-propagation network after each epoch are updated as

Dwij = −h d"
d#$%

for some gain factor h [4]. Any pruning algorithm is based on the idea that the synaptic weights which have
weight decay, dE/dw)*, is close to zero will experience an exponential time decay and keeping the weight
would be like adding the penalty value to the error function [4].

Lot of research papers have described different ways of pruning, like relevance [6], badness [3],
distinctiveness [2], etc. But for the purpose of this paper, we will look at sensitivity [4] method for network
reduction.

6.1 Sensitivity

 The challenge in removing the neurons is to decide which neurons to remove from the layer.
Sensitivity observes the changes in the synaptic weights of the layer after certain epochs. The sensitivity is
calculated using

𝑆 = −
E 𝑤. − 		𝐸(𝑤))

𝑤. − 𝑤) 	𝑤.

where 𝑤. is the final value of connection after completion of training phase, 𝑤) is the small random initial value
of weight that the network started training with and E is expressed as function of w [5].

A “shadow array” is used that keeps track of all the changes to the synaptic weights, sorts them in the
decreasing order of their changes, and then discard the ones at the end of the array, since these will be the ones
that very low sensitivity or remove the neurons that have synaptic weights below a certain threshold.

For our model, we haven’t defined any threshold for pruning. We will be assuming that the neurons
which haven’t shown any changes in its weights after certain number of epochs have the lowest sensitivity and
hence remove them. We are also limiting to at most one neuron when we will be pruning the neurons (at most
one from each layer in case of deep neural network). We will be applying pruning on the single layer of our
two-layer network as well as all the hidden layers of our deep neural network and see how our networks perform
after pruning.

Additionally, we can’t directly remove the neurons from our network. So we will be making weights of
pruned neurons zero manually. But gradient will update the weights of the neurons nonetheless, and so we keep
the record of all the neurons that have been pruned and make sure those are assigned zero after every epoch.

6.2 Pruning on two-layer neural network

For our two-layer neural network, we observed the change in weights after certain number of epochs,
which varied from 10 to 100, and the neuron which showed no change in weights were removed from the
hidden layer. We selected to prune our neurons after certain number of epochs because after pruning, the
accuracy of our network dropped drastically, sometimes even dropping to just 14%, and so we wanted our
network to retrain before we can remove another neuron.

On varying the interval of pruning, it was found out that 10 epochs were far too less, and the network
did not get enough time to retrain. On the contrary, 100 epochs were too long and did not remove enough
number of neurons from our network. So the pruning technique worked well between 45 to 70 epochs, and so
we decided to prune our hidden neurons after every 50 epochs.

It was observed that anywhere between 0-5 hidden neurons were removed from our network i.e. up to
10% of the hidden neurons were removed. Considering the training situation when 5 neurons were removed, the
accuracy was still found to be about 90.96%, which is equal to the testing accuracy of the network with 50
hidden neurons.

Now that the network was trained and pruned, it would be a bad network if it can’t classify the any
given inputs accurately. So to test our network after pruning, the same test data set of 2100 instances were
passed to the pruned network and observed. The test accuracy with 45 hidden neurons were found to be 88.43%,
which is nearly same to the 87.81% accuracy of the network with 50 hidden neurons.

Table 5 shows the accuracy results of our two-layer model after pruning.

Table 5. Results of the classification on data set after pruning on two-layer neural network.

Classes Number of instances identified
correctly in training (out of 30)

Number of instances identified
correctly in testing (out of 300)

Brickface 29 294
Sky 30 295

Foliage 25 248
Cement 24 214
Window 23 218

Path 30 289
Grass 30 299
Total 191 (210) 1857 (2100)

6.3 Pruning on deep neural network

 After applying pruning algorithm on the single layer of two-layer model, we will apply the same
technique on all the hidden layers of our deep neural network.
 All the pruning criteria remain the same from our previous two-layer network model i.e. remove at
most one neuron that showed no changes in weights at all. We manually make the weights zero of the pruned
neurons for every epoch, and in this case we need to record all the pruned neurons for every hidden layer.
 As expected, the accuracy dropped drastically when the neurons were pruned during the training stage.
The losses were even increased six folds sometimes, assuming since we are applying the pruning three times
and thus increasing the number of neurons that were pruned. So we had to retrain our network again. We tried
retraining our network for 50 epochs again, but it was far too less and our network did not retrain enough. So we
kept on increasing the interval, and found out 200 epochs was a good time for our network to retrain. The

variance in loss can be seen in Figure 2, where it shows a sudden spike in loss when the neurons are pruned, and
how retraining reduces the error.

Figure 2. Graph between loss rate (y-axis) vs number of epochs (x-axis). The spikes in the graph show that the
loss increases drastically immediately after pruning but decreases after retraining.

 The pruning was much more efficient in this model than the other two-layered model. It was able to
prune up to 15% neurons in first hidden layer, 70% in second and 40% in third. Second hidden layer saw the
most significant changes compared to the other two layers. Overall we were able to reduce our network by 40%,
and still able to achieve accuracy of 95.24% after consistent retraining. The training accuracy for each class can
be given in Table 6.

Table 6. Results of the classification on training by Deep Neural Network after pruning.

Classes Number of instances identified
correctly (out of 300)

Number of error
(loss)

Percentage Error
(loss)

Brickface 297 3 1
Sky 300 0 0

Foliage 292 8 2.67
Cement 289 11 3.67
Window 233 67 11.33

Path 290 10 3.33
Grass 299 1 0.33
Total 2000 (2100) 100 4.7

Although the network has learnt extremely well, it shows great results while testing too. It was able to
classify images with 93.81%, much better than any other model mentioned in this paper. The results based on
the classes can be given in Table 7.

Table 7. Results of the classification on testing data set by Deep Neural Network after pruning.

Classes Number of instances identified
correctly (out of 30)

Number of error
(loss)

Percentage Error
(loss)

Brickface 29 1 3.3
Sky 30 0 0

Foliage 29 1 16.6
Cement 28 2 20
Window 21 9 23.3

Path 30 0 0
Grass 30 0 0
Total 191 (210) 19 9.04

 The number of hidden neurons in each hidden layer were varied, to observe the behaviour of pruning in
each layer. The observations have been given in Table 8.

Table 8. Results of the classification on testing data set by Deep Neural Network after pruning.

Number of
neurons in

hidden layer
1

Percentage of
neurons

removed from
layer 1

Number of
neurons in

hidden layer
2

Percentage of
neurons

removed from
layer 2

Number of
neurons in

hidden layer
3

Percentage of
neurons

removed from
layer 3

50 4 50 70 50 30
20 15 60 70 30 30
60 5 20 55 40 25
50 10 20 65 70 30
30 13 30 70 30 36

It was generally the second hidden layer that saw the most pruning. Irrespective of being having the

highest number of neurons or lowest or even equal, 50 to 70% of neurons were pruned regardless. On the
contrary, the hidden layer 1 saw the least pruning, up to 15% only. This can be because of being close to the
input layer it changes its values more often as compared to the other two layers. The third layer showed some
consistent amount of pruning, usually in the vicinity of 30%.

7 Conclusion and future work

 Thus an oversized two-layer network was made successfully and the same model was extended to
create a multi-layered neural network also called as deep neural network. The deep neural network saw
vanishing gradient problem, which was solved using rectified linear unit activation function. The models were
compared with another technique, called Support Vector Machine and found out that the accuracy of both the
models were nearly the same. A pruning technique called sensitivity was studied and applied successfully on
both of our networks. Although the pruning method was able to reduce the size of two-layer neural network by
only 10%, it was able to reduce our deep neural network by 40%. Furthermore, it was observed that some layers
were more responsive to pruning than others.
 Using this method of pruning, we could predict the size of the network next time who wants to solve a
similar type of classification problem. Also for future scope, we can study on how well the sensitivity works on
larger and deeper neural networks that consist of much more hidden layers and compare it with other pruning
techniques and see if they work just as same. This pruning technique can further be used for other Deep
Learning networks like Convolution Neural Networks (CNNs), Recurrent Neural Networks (RNNs) etc.

8 Reference

1. De Boer, P.T., Kroese, D.P., Mannor, S. and Rubinstein, R.Y., A tutorial on the cross-entropy

method. Annals of operations research, 134(1), pp.19-67 (2005)
2. Gedeon, T. D., Harris, D., Network reduction techniques. In Proceedings International Conference on

Neural Networks Methodologies and Applications, Vol. 1, pp. 119-126 (1991)
3. Hagiwara, M, “Novel back propagation algorithm for reduction of hidden units and acceleration of

convergence using artificial selection,” IJCNN, vol. I, pp. 625-630, (1990)
4. Karnin, ED, “A simple procedure for pruning back-propagation trained neural networks,” IEEE

Transactions on Neural Networks, vol 1., pp. 239-242, (1990)
5. Kwok, J.Y., Moderating the outputs of support vector machine classifiers. IEEE Transactions on

Neural Networks, 10(5), 1018-1031, (1999)
6. Mozer, MC, Smolenski, P, “Using relevance to reduce network size automatically,”, Connection

Science, vol. 1, pp. 3-16, (1989)
7. PyTorch master documentation, http://pytorch.org/docs/master/nn.html, (2018)
8. UCI Machine Learning Repository: Image Segmentation Data

Set, http://archive.ics.uci.edu/ml/datasets/Image+Segmentation, (2017)

