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Abstract:  In recent years, the application of multilayer neural network has become widespread in the field of computer 
vision, replacing its traditional (hand-crafted) features and classifiers. While maintaining high efficiency, the neural 
network models are continuously approaching the accuracy limit and even exceed human beings. However, while the 
improvement of accuracy that multilayer models have achieved, their depth and size are also growing at a significant 
fast pace, which leads to both computationally intensive and memory intensive. In this case, it is necessary to develop 
some network reduction techniques to compress the number of parameters and improve the computational efficiency 
of those models. In this research, we use deep neural network classifier to make classification and explore a network 
reduction technique which based on Distinctiveness to reduce the number of parameters. We firstly establish a simple 
artificial neural network (ANN) on a simple ionospheric dataset and prune it. Then, we will extend the simple ANN to 
a deep convolutional neural network (CNN) on a complex image classification dataset, MNIST, and examine the 
performance of this network reduction technique on CNN. The experimental result shows that the ANN maintains its 
original accuracy after pruning without retrain. And, the proposed CNN maintains the same level of accuracy at about 
95% but has 70% reduction in the number of parameters. Finally, we will compare our result with a mature CNN model 
(Ciregan, Meier & Schmidhuber, 2012). 
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1   Introduction 

Deep neural network has widespread applications in the field of computer vision. With high performance of computational 
efficiency, deep neural networks have achieved a great success by approaching the accuracy limit and even exceed human 
beings. One typical application is using CNN on classification task of distinguishing handwritten digits, and the MNIST 
dataset is the most canonical carrier to test the performance of classifiers. In this case, we will apply CNN on MNIST 
dataset in order to get more comparable results. 

However, while the DNN models widely apply in many practical areas, their depth and size are also growing at a 
significant fast pace, making them difficult to deploy on embedded systems with limited hardware resources. Even if 
transmitting over the network, the high bandwidth consumption is daunting for many users. On the other hand, large-
scale models also pose enormous challenges to equipment power consumption and operating speed. In this case, 
developing smaller models is crucial for further application of CNN models, especially for the products with limited 
hardware resources and need updates frequently. In this case, many network reduction techniques have been developed, 
and many of them have shown a satisfiable ability in practice. 

In this research, we apply a network reduction technique that reduces the number of parameters of the network by 
pruning neurons with the Distinctiveness (Gedeon & Harris, 1991) criterion. Firstly, we examine this technique by pruning 
on a simple ANN in order to prove its feasibility.  Then, we will apply this technique to a CNN model, as a classifier to 
distinguish handwritten digits in MNIST dataset. As it is crucial about the network size, we first consider the architecture 
and hyper-parameters of the models, such as the number of neurons in hidden layers of ANN and the activation and 
pooling functions of CNN, the number and order of convolutional layers and neurons in the fully connected layer. Finally, 
we discuss the results of the final implementation of our CNN and compare the results to a mature CNN model. 

2   Method 

2.1   Dataset and Pre-processing  

2.1.1   Ionospheric Dataset  

The ionospheric dataset used in this study were collected by the Space Physics Group of The Johns Hopkins University 
Applied Physics Laboratory, which located in Goose Bay, Labrador. In details of the data, there were 17 pulse numbers 
for the system which were described by two attributes respectively, where all 34 attributes are continuous, and the 35th 
attribute is the target which represents whether this data sample is suitable for further analysis (“good”) or not (“bad”). 
Obviously, this is a binary classification task. Generated by radar and collected from the natural world, the original data 
in this dataset are "dirty", incomplete, redundant and fuzzy, which cannot meet the requirements of this artificial neural 
network directly. Hence, we need to preprocess the data to be clean, accurate and concise, which is easier to be fed into 
the network and, therefore, improving the final performance. As this is a binary classification task, we transform the target 
value “g” and “b” into 0 and 1 respectively. 



Standardization: Center to the mean value and component-wise scale to unit variance. After transforming, all 
attributes in the same dimension have zero mean and unit variance. Its calculation method is that taking eigenvalues minus 
the mean then divides by the standard deviation. 

Normalization: Scale input vectors individually to unit norm. The p-norm of each sample is calculated, and then each 
element in the sample is divided by the norm, and the result of this process is that the p-norm (l1-norm, l2-norm) of each 
processed sample is equal to 1. In this study, I used l2-norm. 

2.1.2   MNIST Dataset  

The MNIST (Mixed National Institute of Standards and Technology database) comes from the National Institute of 
Standards and Technology (NIST). The training set consists of handwritten digits from 250 different people, of which 50% 
are from high school students, and 50% are from the Census Bureau staffs. The test set is the same proportion of 
handwritten digits. It contains 60,000 training images and 10,000 testing images (Kussul & Baidyk, 2004). Images are in 
the grayscale format with 28x28 pixels of each image and are stored in bytes. Each image has a corresponding label, 
which is the number corresponding to the image. 

Just like what Ciregan, Meier and Schmidhuber did, we normalize the digit width to 8, 12, 16, 20, 24 pixels to create 
another five datasets, which is like seeing the data from different angles model (Ciregan et al., 2012). By training five 
CNNs per dataset, it creates a 30 columns hierarchical Multi-Columns CNN architecture. Figure 1 shows the architecture 
of this hierarchical model, where the input image can be processed into n blocks. Each column was trained in different 
ways for per block and their predictions are averaged. Compared to the simple CNN model with only one columnn, this 
hierarchical model could achieve higher predicting accuracy. 

 
 
 
However, the experiment result shows that this multi-column CNN needs too much training time, which was extended 

from minutes to hours. As in this research, our primary aim is just to explore the performance of the pruning technique 
with the Distinctiveness criterion, thus our final result is a simple CNN with only one column. Besides, for the same 
reason, we use just 1000 samples (out of 60000) as training set and another 1000 samples (out of 10000) as the test, which 
is way faster than training on the entire dataset, reducing to less than 1 minute, with only 5 per cent accuracy lower. 

2.2   Model Design  

2.2.1   ANN Model architecture  

As the primary purpose of using ANN is to examine the feasibility of our network reduction technique, we simply 
establish a two-layer ANN which has only one hidden layer. The neural network is feed-forward and trained by back-
propagation. Regarding each hidden neuron in the network as a perceptron, the activation function is Rectified Linear 
Unit Function, and the output of hidden layer is linear. We applied mini-batch training and stochastic gradient descent to 
optimize the parameters. Besides, the loss function was generated by cross-entropy. we choose 15 hidden neurons and set 
up the initial weights of the synapse as random values from -1 to 1 but not all 0. 

2.2.2   CNN Model architecture  

Initially, we want to follow what Ciregan, Meier and Schmidhuber did to establish a hierarchical multi-column CNN architecture. 
Normalized the digit width to get six columns, each column, which is a deep CNN that generated from a basic CNN model, was 
trained in five different ways per block and their predictions are averaged. However, training this complex model is so time-
consuming that makes it impractical to running on a single personal laptop with instance feedback. In this case, as our primary 
purpose of this research is just to examine a network reduction technique, we simply apply this technique on a simple CNN model. 

Fig. 1. Model Architecture of MCCNN 



For the simple CNN model, it has two convolutional layers and one fully connected layer. Each convolutional layer consists of 
one convolutional layer with kernel size 5x5, one activation function and one pooling layer with kernel size 2x2. In particular, we 
choose ReLU as activation function and max-pooling as pooling method. 

2.2.3   Activation Function and Pooling Method in CNN 

In this research, we use ReLU as the activation function and max-pooling as the pooling method in the pooling layers. 
We also have tested the performance of different activation functions (Sigmoid) and pooling methods (Average-Pooling). 
The result shows that the combination of ReLU and Max-Pooling is the best.  

Max-Pooling (1) and Avg-Pooling (2) are defined as: 

 
(1) 

 

(2) 

 
To analyse this issue more profoundly, we have done a small searching but failed to find any research which gives a 

satisfying explanation. In this case, we will just try to explain this phenomenon in the result part in an intuitive way. 

2.2.4   Loss Function  

We use the cross-entropy loss as the loss function, which measures the ‘distance’ between what the neural network’s belief 
of the output class is, and what the actual target class is, which more clearly describes the distance between the actual 
model and the ideal model. The cross-entropy is defined as:  

 
(3) 

 

2.2.5   Optimiser  

In this research, we use Adam (adaptive moment estimation) as the optimizer, which is an algorithm for first-order 
gradient-based optimisation of stochastic objective functions, based on adaptive estimates of lower-order moments 
(Kingma & Ba, 2014).  The Adam algorithm dynamically adjusts the learning rate for each parameter based on the first 
moment estimation and second-moment estimation of the gradient of the loss function for each parameter. Adam is also 
based on a gradient descent method, but the learning step size for each iteration parameter has a definite range. It does 
not result in a large learning step due to a large gradient, and the value of the parameter is relatively stable. It does not 
require stationary objective, works with sparse gradients, naturally performs a form of step size annealing. 

2.2.6   Evaluation 

We use K-fold cross-validation in order to evaluate the generalisation ability with different initialisation setting of the 
model so as to set up the model. The initial dataset is divided into K subsets, a separate subset is retained as the data for 
the validation model, and the other K-1 sets are used for training. The cross-validation is repeated K times. Each subset 
is verified once, then average the result of K times. 

2.3   Network Reduction  

Several studies focus on diminishing the network size and stimulating the computational efficiency. Many studies paid 
considerable attention to develop the network pruning techniques, introducing the sparsity by prune neurons and channels, 
which could give approximately 8x reduction in storage requirement (Liu et al., 2017). Many criteria of pruning are 
developed as well, such as rank-based, relevance, distinctiveness and contribution. Additionally, the technique that 
quantising the weights and weight sharing also helpful, which remarkably reduce the number of parameters that acquired 
in convolutional layers, and give 5x reduction (Han et al., 2015). Besides, by applying some encoding techniques like 
Huffman Coding, the storage size could further shrink another 20% (Han et al., 2015). 

A “super-convergence” techniques, based on adjusting learning rates, has an order of magnitude faster than with 
standard training methods (Smith & Topin, 2018). Besides, the hardware is also an excellent choice for improvement, and 
an FPGA-based hardware acceleration framework EIE has been developed (Han, Liu, Mao, Pu, Pedram, Horowitz& Dally, 
2016) which gives another order of magnitude improvement. 
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2.3.1   Relevance, Contribution, Sensitivity and Similarity  

The property of relevance (Mozer & Smolenski, 1989) is estimated by comparing how well the network does with the 
unit in place, versus the situation if the unit was removed. The property of contribution (Sanger, 1989) is the product of 
the activation of the hidden unit and the weight from the hidden unit to the output unit. The property of sensitivity (Karnin, 
1990) of the global error function to the removal of a unit can be done by recording the incremental changes to synaptic 
weights during an epoch of back-propagation. Also, the property of Similarity of hidden units is determined from the unit 
output activation vector over the pattern presentation set. 

Excess units are units with high relevance which can be eliminated into one, or with the low contribution which can 
be removed, or with low sensitivity or with high. 

2.3.2   Distinctiveness 

In this study, I applied a pruning technique which was partly introduced in Gedeon and Harris’s work, and I used 
distinctiveness as criteria. In order to calculate the distinctiveness between two neurons, we first extract their weight 
vectors and use these two vectors as variables. We can calculate the distinctiveness of pairs of vectors by calculating the 
included angle between them in pattern space (Gedeon & Harris, 1991). The angular range is from 0 to 180 degrees. Units 
with angular less than 15 degrees are considered sufficiently similar, and units with angular more than 165 degrees are 
considered complementary, which all excess units.  
    When filtering out the excess units, units with angular less than 15 degrees were eliminated into one which the bias 
and weights vector of the removed one were added on that of the remaining one. Also, units with angular more than 165 
degrees were all removed (Gedeon & Harris, 1991). It must be noted that, these particular angles are not fixed and depends 
on the structure of actual model. 

As this pruning operation aims to reduce the size of the network by merging similar units and removing excess units, 
besides, keep the performance after reduction, the pruning operation should keep the contribution of each unit as much 
as possible. Therefore, in details about updating the weights, three parts might need to be considered. Part 1, the weight 
vectors from prior layer to the target units. Part 2, the bias values of target units. Part 3, the weight vectors from target 
units to posterior layer. 
    When using Sigmoid as the activation function, we have to normalise the vectors before calculating angular. As logistic 
sigmoid squashes all activations between 0 and 1, it has a ‘centre’ 0.5. Therefore, if we want to scale the range of angular 
to 0-180 degrees, we can simply subtract 0.5 element-wise from all weights. 

2.3.3   Layer 

In the ANN model, as hidden layers contribute the most parameters, we will apply the network reduction technique to 
prune neurons in hidden layers. Additionally, in the CNN model, the number of parameters in the convolution layers of 
the first few layers is small, but the computational proportion is enormous; while the full-connection layer behind is just 
the opposite, most CNN networks have this feature. Therefore, we focus on the convolutional layer when performing 
computational acceleration optimisation and focus on the fully connected layer when performing parameter optimisation 
and weight clipping. 

2.3.4   Algorithm 

Firstly, we have to extract the weight vectors of all neurons in the target layers and calculate the included angular between 
each pair of vectors in each layer. Secondly, based on the Distinctiveness criterion that described above, it is easy to filter 
out the excess units and divide them into two sets, removing set and eliminating set. Thirdly, eliminating or removing one 
pair of neurons from what we get above. It is worth mention that elements in the two sets may overlap and we might lose 
some elements in eliminating set while we are removing elements in removing the set. In this case, we have to deal with 
eliminating first.  Then, calculate the included angular again of the remaining pairs. Finally, repeat this step (removing or 
eliminating a pair then re-calculate) until no element is filtered out in both sets.   

The steps above show what the pruning algorithm do in one processing iteration. We will retrain this pruned model and 
apply the pruning algorithm again to form another processing iteration. These iterations will run for several times until 
the whole algorithm converges. 

At the specific technical level, if we want to “kill” a neuron from the network, we have to isolate them from other 
neurons in case affect the training of remaining neurons in the retraining process. That is to say, and we have to stop them 
taking part in the backward process. There are two ways to “kill” a neuron in the network. One method is to set the 
“requires_grad” attribute to false of those neurons, which tells the PyTorch to not calculate their gradient during the 
backward process. Another method is to create a mask matrix that consists of 0s and 1s, which is multiplied by their 
gradients during the backward process. If one neuron is “killed”, then we change the corresponding digit to 0 in the mask 
matrix. 

3   Result and Discussion 

 



Implemented on Python, the network was built basically based on the package PyTorch in this study. We first apply an 
ANN model in ionosphere dataset to classify “good” or “bad” and then apply a CNN model on MNIST to recognise of 
handwritten digits. Firstly, by examining the performance of different model architectures and inner structures, we set 
up the ANN and CNN models with proper initialisation. Then, data from datasets was preprocessed and fed into the 
neural network. After that, identifying excess units in the target layers by some criteria and eliminating or removing 
them, the network was adjusted and produced a reduced network at the same accuracy level but with less number of 
parameters.  

3.1   Pruning Neurons in ANN 

The ANN model gets 99.65% accuracy on the training set and 96.92% on the test set. Applying the pruning technique 
which introduced in the previous part, we extracted the parameters in the hidden layer and calculated the included angles 
between the weight vectors of every two hidden neurons in the same layer, by the distinctiveness as the criterion.  In 
particular, the angles are shown in Figure 2.  

In this figure, each line represents an included angular of one pair of weight vectors. From the graph, we can find that 
most lines are gathering together in the range of 60 to 120, but there are a few lines that continue decrease to under 40 
degrees. In particular, there are three lines drop to less than 15 degrees and these are the pairs what we intended to filter 
out.  

Filtering out included angles which less than 15 degrees or more than 165 degrees. We have the result that shows in 
Table1. 

Table 1.  Included angles of weight vectors which less than 15 degrees or more than 165 degrees. 

No. layer No. neuron1 No. neuron2 Angle 
1 1 5 11.948781055260131 
1 1 9 12.806529576465282 
1 5 9 13.543175426417788 

In particular, the vector pairs that less than 15 degrees should be eliminated into one unit, by adding the weights of the 
removed unit to the remained unit, and vector pairs more than 165 degrees should be both removed. Augmenting the 
weights of neuron No.5 to neuron No.1 on all weight vectors that connect from units in the previous layer to those two 
units and bias of themselves (like part 1 together with part 2) respectively, the testing accuracy remained 96.92%. 
Calculating the included angles again, there was still another included angle that filtered out which is “(1,1,9) 
11.760503839566276”. Pruning again and got the testing accuracy for slightly decreasing to 95.38%. Filtering the 
included angles one more time, there were no vector pairs that filtered out, which finishes the pruning procedure. The 
operation described above is designed to automatically. 

According to the result above, we can find that during pruning operation, the results of testing accuracy remained stable 
which fits the discussion we made in previous part. This gives the evidence of the feasibility of our pruning technique. 

3.2   Activation Function and Pooling Method in CNN 

As it is mentioned above, we use ReLU as the activation function and max-pooling as the pooling method in the pooling 
layers in this research. And, we also have tested the performance of different combinations of activation functions and 
pooling methods. The result (Table 2) shows that the combination of ReLU and Max-Pooling is the best.  

Table 2.  Testing accuracy with different combination of activation functions and pooling methods 
 ReLU Sigmoid 
Max-pooling 96.70 87.15 
Avg-pooling 94.60 90.15 

 
To analyse this issue more profoundly, we here just try to explain this phenomenon in the result part in an intuitive 

way. The simplest explanation is that, on the one hand, its performance is excellent, on the other hand, many experts use 
it, so everyone follows this way. However, if we concentrate on the difference between these functions and methods, we 
will get some straightforward understanding.   

Fig. 2. Included angles of every 
two weights vectors in the same 
hidden layer during the whole 
training. 



Max-Pooling aims to filter. If there is a conforming feature in a certain area, that is, it exists, then this information is 
retained and delivered. Avg-Pooling aims to extract commonalities. Using Avg-Pooling can enhance the similarities, 
reduce the difference, and better retain the inner relationship of information.  Spatially, Avg-Pooling is linear, and Max-
Pooling can be considered nonlinear. 

From another perspective, Max-pooling uses the maximum value to represent the original region, while Avg-pooling 
uses the average value. However, the average value is only a statistically significant value, not the actual value of any 
single pixel of the original region (or the single point of the output of the previous layer), which easily leads to the 
alienation of the output result. On the other hand, the correlation between the maximum value and the edge information 
is higher than the correlation between the mean value and the edge information.  

The pooling layer has two main functions. One is to remove redundant information, and the other is to retain feature 
information of the feature map. In the classification problem, we need to know what objects are in this image, but not 
much concern about where the objects are located. In this case, it is apparent that max pooling is more suitable than the 
average pooling. Besides, in areas where the network is relatively deep, features are sparse. If we want to delivery sparse 
features, choosing the largest value from the region is better than passing the average value. 

3.3   Pruning Neurons in CNN 

In this research, we use distinctiveness as the criterion to recognise excess units. As we were aiming to examine the 
performance of the pruning technique with this criterion, we use an ordinary CNN model as the testing model which has 
two convolutional layers and one fully connected layer.  According to the reason that we have discussed in section 2.3.3, 
our pruning technique will apply to the fully connected layer. 

Following the model design in section 2.3.4, we were firstly testing the pruning algorithm’s performance in one 
processing iteration. In this case, we run our algorithm on the CNN model, by setting the excess domain as less than 30 
degrees or over 150 degrees, which filtered out 74 pairs in removing set and 329 pairs in eliminating set. Carrying out the 
pruning technique, it shows that after nearly 400 iterations of pruning and re-calculating, the network maintains its 
prediction performance at the same accuracy level with only slightly reduced. This could valid the feasibility of our 
pruning technique. The oscillation of the accuracy along pruning is shown in Figure 3 and Figure 4. After that, we should 
retrain the outcome network in order to redeem the loss while pruning neurons. The accuracy slightly improves from 93.3% 
to 93.4%. However, this improvement is not guaranteed in each iteration, but the outcome model that retrained will 
maintain the same accuracy level comparing to the original one. 
 

   
 
 
As we have proved the feasibility of our pruning technique, it is time to validate the authenticity of the whole algorithm 

which retrains the model after pruning. However, applying the whole algorithm on a CNN model will be extremely time-
consuming, as the angular of each pair of weight vectors has to be recalculated in each iteration. This is a formidable 
challenge to most PC devices even if training a small CNN model with only two convolutional layers and one fully 
connected layer. In our CNN model, there are 784 x 10 connections in the fully connected layer which gives more than 
300,000 pairs, and this makes it entirely impractical to test without the help of high-performance computing machine.  

Owing to the reason above, we here just test our algorithm in a brute way. For each processing iteration, we will simply 
remove and eliminate all neurons that filtered out into removing set and eliminating set without recalculating their angular. 
This could significantly reduce the calculations of included angular and provides instant feedback of the performance. 
Results are shown in Figure 5, Figure 6 and Figure 7.  

Fig. 4. Numbers of elements in the removing set 
and eliminating set. 

Fig. 3. Predicting accuracy after number of 
epochs. 



   

 

 
    Figure 5 illustrates the variation of the remaining number of elements in the removing set and eliminating set 
respectively. We can find that, initially, there are significant number of elements in removing set, which is owing to the 
randomly assigned weights in the original network. After a few epochs, the number of elements in both set reduced to a 
very low level as most excess units have been removed from network. If we proceed this testing, a dramatic dropping will 
appear when the number of remaining pairs reduces to about 40,000, which represents approximately 70% reduction of 
number of parameters. Figure 6 demonstrates the number of remaining pairs in the network, which shows that our 
algorithm has reduced approximately 20% neurons from the network just in 40 iterations, even the algorithm has not 
converged. In addition, Figure 7 indicates that the prediction performance has slightly increased. It must point out that, 
this result is just under the condition of applying a brute method, which represents that the delicate algorithm will generate 
a better performance.  

3.4   Comparison of Result with Comparative Study 

In the research of Ciregan, Meier and Schmidhuber in 2012, they established a multi-column deep neural network 
(MCDNN) for image classification, which first achieves near-human performance on MNIST handwriting benchmark. 
By converting the original 20-pixel-width images to 10, 12, 14, 16, 18, 20 pixels and forms six new datasets in order to 
see the data from different angles model (Ciregan et al., 2012). Training each dataset with five different deep neural 
networks and averages their output to get the final prediction. Their model was trained 14 hours with all 60,000 training 
samples and reduced the error rate to only 0.23%. 
    Comparing to the result of this research, it is no doubt that our result is weaker than Ciregan’s. However, our model is 
much simpler than theirs, and we used only 1,000 samples as the training set to get 96% of accuracy by less than 1 minutes 
training. Besides, we have proven the network reduction capability of our algorithm on the CNN model.   

Fig. 5. Numbers of elements in 
the removing set and eliminating 
set. 

Fig. 6. Numbers of remaining con-
nections in the fully connected 
layer during the pruning and re-
training process. 

Fig. 7. The oscillation of accu-
racy during the pruning and 
retraining process. 



4   Conclusion and Future Work 

In this study, we have firstly applied a simple artificial neural network on an ionosphere dataset to examine the feasibility 
of the pruning technique that uses distinctiveness as the criterion, which gives a satisfying result to our study. Then, we 
have applied the deep convolutional neural network technique to solve a classification task on MNIST dataset which aims 
to recognise the actual number of handwritten digits and devised a simple procedure that automatically identifies and 
removes the excess units in fully connected layers of the CNN model. We still use distinctiveness as the criterion of 
recognising excess units, by calculating the included angular of weight vector pairs. Once we filter out the excess units, 
they are isolated from the network by creating a mask matrix in the backward process. After that, the model will be 
retrained, and this whole procedure will be carried out several iterations until the algorithm converged. 

Our experimental results prove the authenticity of our algorithm. By applying this network reduction technique, we 
could reduce approximately at least 70% of parameters in the fully connected layer but maintain the same accuracy level 
comparing to the original. 

For future research, we could extend our reduction technique onto the convolutional layers. Although the number of 
parameters in the convolutional layer is small, it takes the majority of computational proportion. Reducing the number of 
parameters in the convolutional layers could improve the computational performance of the model. Another potential 
point of future research is the techniques to compression the size of the model by applying techniques such as encoding 
methods like Huffman Coding and quantising the weight.  For further improving the prediction accuracy, complex models 
like what Ciregan did are helpful. Some other preprocessing techniques such as outlier deduction could promote the 
development of these studies. 
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