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Abstract. This paper mainly studies the genetic algorithm 

performance on standard neural network training (weight optimization). 

Besides, two selection strategies together with two crossover and two 

mutation method of genetic algorithm have been implemented and 

compared to further explore the feature of weight optimization. The 

selection method includes proportional selection, which selects each 

population with probability depending on their fitness, and elitism 

selection, which always keeps the top fitness population for each 

generation. The final part is the analysis and comparison between 

classical optimizer, such as SGD and Adam, and genetic algorithm on 

doing same tasks. Same as expectation, genetic algorithm performance 

worse in limited time than gradient method. 
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1   Introduction 

Genetic algorithm is one of famous evolutionary algorithm which is used for 

optimization and search problem. The optimization problem includes the neural 

network weight optimization, which is in float-representation, and hyperparameter 

optimization, which is in discrete representation. Compared with classical optimizer, 

such as gradient decent and momentum method, genetic algorithm is good at finding 

the global optimum while the gradient methods are likely to be trapped by local 

optimum. However, in terms of neural network training, especially the supervised 

learning network, gradient method is known to be the standard optimization method 

because local optimum is no much different from global optimum in general cases 

(Bengio, 2009). Thus, applying genetic algorithm on neural network may result in 

worse solution than gradient method. It should not be the reason that prevents people 

from utilizing the method, instead genetic algorithm will help people understand 

neural network better. 
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There are five main steps on doing genetic algorithm, representation, fitness function, 

population selection, crossover and mutation (Whitley, 1995). The representation part 

is to convert the data into binary representation so that crossover and mutation can be 

used on the form easily. The fitness function is the judgement on how good the 

population is. With respect to neural network, the fitness function is the loss function. 

Population selection consists of parent selection and the offspring selection. The 

parent selection is used to pick proper parents from current population, usually the 

most adapted ones, to generate offspring for next generation. The offspring selection 

or called replacement, is for determining which population to be replaced by which 

offspring. In a word, the meaning of selection step is to keep better population which 

can yield better results for future. The crossover step generates new population by 

recombining part of allele from one parent with part of allele from another so that 

better genotype may be found after sufficient generations. However, if offspring only 

own genes (features) from his ancestors, the diversity (search space) will be limited. 

Hence, mutation is applied for rising the variety. In optimization thinking, mutation 

expands the search space from local to global. Consequently, Different problem uses 

different strategies of the five steps. In the following section, strategies applied for 

neural network weight optimization will be illustrated in detail.     

 

2   Method 

As the task focus on the performance of genetic algorithm for auto-associate neural 

network weight optimization, the method will only talk about the feature of core 

components of genetic algorithm rather then neural network. In detail, the section 

contains data and preprocessing, overall method, selection and replacement, 

crossover, mutation. 

2.1   Data and Preprocessing   

Different from data used for general auto-associate neural network, the experiment in 

this paper focus on the structure of genetic algorithm. Thus, only “Lenna” is used. 

The first reason for using the data is because it is simple enough. It is grayscale, one 

channel image and the size is also small 64 by 64. The second reason is that, in terms 

of the data amount, training the network to be able to reconstruct many images is 

quite hard for genetic algorithm. In fact, it is not easy to fit the single image in no 

more than 1000 generations.  

In terms of preprocessing, “Lenna” is separated into 16 identical size patterns. Each 

pattern is a 16 by 16 sub-image (Gedeon, 1995). As training with genetic algorithm is 

distinguished from gradient method, it regards the overall loss as the fitness of the 

model (population). Therefore, there is only one batch rather than a few batches when 

use SGD.      

 

 



2.2   Overall Process 

As it is known that genetic algorithm needs a population which is a set of neural 

network models in the weight optimization task. Thus, the chromosome is all the 

weight of a model including weights and bias of input layer, weights and bias of 

output layer. In detail, the standard network is a three-layer (input, hidden, output) 

network. The input layer gets 256 inputs and 16 outputs, which means there are 256 × 

16 + 16 = 4112 variables. Besides, the hidden layer gets 16 inputs and 256 outputs, 

which indicates there are 16 × 256 + 256 = 4352 variables. Thus, in total, there are 

around 8500 genes insides each chromosome. As the genes (variables) is represented 

in float type, float-representation is applied directly rather than binary representation. 

The advantage of avoiding converting them to binary is that the accuracy is 

unrestricted and many good crossover methods, such as blend crossover, can be easily 

applied. Nevertheless, the search space becomes larger. The default data type of 

Pytorch is Float which is a 32-bit number. Thus, the DNA size is 32 bits, which is a 

very large search space. To reduce the space, they are set to be in range from -1 to 1.  

The fitness function is the loss function of neural network. Here mean square error is 

applied. As all the split image is in one batch, the loss will be the total loss of all 16 

sub-images. Thus, the lower the loss is the better the fitness is.  

The population size is one of hyperparameter indicating the amount of model inside 

the population. For example, we use 1000 for this parameter. Then the initialization 

step will initialize one thousand models by random. After initialization, genetic 

algorithm will use the fitness of every models to do selection. The selection output 

will be the selected parents (models). After selection, crossover is applied for 

breeding offspring. At the end of this generation, replacement followed by mutation is 

applied. The algorithm will keep iterating until reaches the required number of 

generation. All the detail will be explained in the following subsections.           



2.3   Selection and Replacement 

Selection determines how to selection proper parents from the population. The 

general selection criteria judges based on the fitness. In this paper, two selection 

methods are implemented.  

The first method selects parents in a proportion calculated from their fitness. As lower 

loss implicit higher fitness, the probability is derived from the following equation: 

 

where SUM is the sum of loss of all models in the population. Higher sum over loss, 

higher the fitness that the model has. Then normalize the result to get the probability 

of each model. With this equation, the higher fitness the model is the higher 

probability that the model can be selected as the parent. Then the amount of parents 

that are selected out is the half of the population size.  

The replacement corresponds to this method is also replace the population in 

proportion way. On the contrary, higher fitness should be less possible to be replaced 

as we want to keep the quality of the population. The normalization only is performed 

on the loss itself. Thus, this time the equation is:  

 

Use the probability calculated from this equation to replace N (usually is half) 

population with the new offspring which has already been breed. 

The second method is an elitism strategy. Rather than selected by probability, it 

directly selection the top N (a hyperparameter) best model as the parent. Moreover, all 

of the selected parent will be used for breeding offspring.  

When doing replacement, the offspring will directly replace the non-selected 

population derived from the selection step. If the length of offspring set is less than 

the length of non-selected set, then some of the rest population will be remained to 

next generation.  



2.4   Crossover 

Crossover is the process to absorb features from good identities and use the feature to 

breed new identities. For the weight of neural network, there are two kinds of 

crossover.  

The ordinary one is float-point crossover for single weights. In this method, only 

weight on corresponding position of two parents are taken into account. There are 

many existing methods, such as directional heuristic crossover, arithmetic crossover. 

In this paper, blend crossover (BLX-α) is applied. Compared with the two mentioned 

methods, the explored region of BLX-α is larger and flexible.  

The second crossover variety is special. In most discrete optimization task, the 

position of genes is fixed. We can not put the exchange the first gene to second. 

However, for the weight of neural network, the position switch is possible. It is valid 

to exchange the value of one weight to another. Thus, we can treat all the weight of 

same layer as a gene and do crossover for them. The crossover does not change the 

value of single weight instead it only changes their position, which likes the crossover 

for discrete data.      

2.5   Mutation 

Mutation is the process to enhance the diversity of population. In optimization word, 

it is used to expand the search space. For example, the search space of gradient decent 

is only its neighborhood and the route it passes. But for genetic algorithm, with the 

help of mutation, its search space is able to reach almost the whole solution space. 

Similar to crossover, mutation can be applied for single weight or all weights of a 

layer. For the single weight crossover, in order to make the computing efficient we 

can not use a loop to visit each weight and use a random number to decide whether 

keep it or not. As a result, some weights are selected directly to be mutated. For 

example, if the mutation rate is 0.08 and the population is 1000, then randomly select 

80 weights to mutate. Furthermore, the mutate for the weight is only to assign a 

random value within range to it. 

Moreover, the whole layer has a chance to mutate. This mutation will randomize all 

the weight in such layer. The strategy speeds up the exploration, especially at the 

early stage.  



3   Results and Discussion 

This part shows and compares the optimization result among different selection 

strategies of genetic algorithm, different network and different optimizer. Network to 

be compared is standard neural network and shared weight neural network. Two 

selection strategies explained in the part two will be analyzed and compared. Finally, 

the comparison is on the gradient-based optimizer and genetic algorithm.   

 

 

Figure 1: The loss tendency during training for 5 methods 

 

3.1 Two Selection Strategies 

 

In the experiment, the population size is 1000 and the generation is 300, the mutation 

rate is set to be 0.001. Other hyperparameters in practice not influence the result so 

much. As a result, the proportional selection is much worse than the elitism selection, 

according to Figure 1. Intuitively, compared with elitism selection, proportional 

selection uses all the population smoothly, as every population have a chance to be 

parent. But for elitism, only the top part population make sense while the other will be 

replaced finally. Thus, the proportional selection explores more “carefully”. However, 

carefulness also has its side effect which makes the exploitation slower within same 

time limitation. With respect to neural network weight optimization, exploration is 

less important than exploitation in general cases. Because it is less likely for high 

dimensional function (neural network model) to have local optimum although we 

cannot ensure that the function is concave (Bengio, 2009). Thus, paying more 

attention on exploration like the proportional selection is not good for optimizing 

neural network.  

 

3.2 Two Neural Network 



Intuitively, shared weight network only has roughly half weight of standard network, 

which should make the genetic algorithm perform better. However, this intuition is a 

mistake because less weight leads to relatively higher loss. That is use same 

generation, the final loss may even worse as the Figure 1 shown. Thus, current 

experiment cannot show anything that applying genetic algorithm helps shared weight 

network perform better.   

 

3.3 Genetic algorithm and Adam 

 

As it is mentioned in previous section, genetic algorithm focuses on broad (global 

optimum) rather than exploit deep (local optimum). However, gradient method, such 

as Adam, is designed to solving roughly concave function whose local optimum is not 

much different with the global optimum. Thus, the result (Figure 1) is clear. 

Although there is no much loss difference compared with Adam and elitism selection, 

the time consumption of genetic algorithm is hundred times large than Adam. It only 

takes around 1 second to train 300 epochs with Adam, but 300 generations for genetic 

algorithm takes around 5 minutes. Actually, if expand the generation to 1000 or more, 

the curve of genetic algorithm will become flat, which indicates it approaches 

convergence earlier than Adam.  

 

3.4 Hyperparameters and Configurations 

Genetic algorithm also has many hyperparameters as neural network. Besides the 

hyperparameter, the configuration of genetic algorithm, such as different selection 

method, different crossover method and different mutation method, also influences 

the performance a lot. Firstly, selection and crossover reflect the exploitation 

capability of the algorithm, which helps the algorithm dive in local optimum. Only if 

it remains the good solution, it can start exploit better solution based on that solution 

in the future generations. In other word, they also indicate how large the local search 

space is. The proportional method, compared with elitism, use selection that 

concentrate less on exploitation. Therefore, it obtains worse result for exploitation-

focus problem.  

On the contrary, mutation reflects the global search space or called exploration space. 

If a problem contains so many local optimum, the duty of mutation will be to find the 

new local optimum region. Thus, a good mutation strategy is the main reason that 

genetic algorithm is able to discover the global optimum. Hence, the parameter 

related to each component determines which part the algorithm should concentrate on 

more or less.   



4   Conclusion and Future Work 

Consequently, the work in this paper compares the performance among several 

methods. The result is that the performance of genetic algorithm is worse than 

classical optimization method for simple neural network. The worse performance 

consists of two aspects. One is the training speed, the other one is the loss. However, 

by researching, the reason that such result occurs is not due to the capability of 

genetic algorithm itself, but because such neural network optimization is not such 

suitable for genetic algorithm, compared with gradient-driven optimization methods. 

Genetic algorithm can not only be utilized for weight optimization, but also the 

hyperparameter tuning for neural network. Thus, in the future, it is meaningful to 

apply genetic algorithm on optimization the hyperparameter. As the hyperparameter 

contains more discrete set, such as what optimizer to use, what number of hidden 

layers, what activation function is better, the effect after applying genetic algorithm 

may be better.  Furthermore, training with genetic algorithm usually takes much 

more time than gradient method. Hence, in the future, it is possible to compare final 

loss between long time training models to see the upper performance limit of genetic 

algorithm.  
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