
LETTER_RECOGNITION 

Report 

Abstract: This data set includes 20000 data and the feature of these data were 

summarized 16 different numerical attributes, and different combination of these 16 

attributes can represent different English capital letters， and my training model can 

predicate the letters by the 16 different numerical attributes. And when comparing the 

model trained by Pavlov, Popescul, Pennock and Ungar(2003), it can be easily found 

that my model is worse than theirs as my model accuracy can not reach that high value 

as theirs. 
 

Keywords：data normalization, activation function, optimizer, batch gradient descent 

1   Introduction 

With the development of modern science and technology, data statistics and analysis 

techniques have been widely applied to various fields.  According to Paliouras and 

S.Bree(2005), quantities of empircM concept learning algo-rithms have been improved 

since two decades ago. Also, when human experts faced with difficult situation, they 

always can treat these problems as special cases of familiar examples by classifying 

and analyzing them and then apply known solutions to work it out (de Groot, Chase & 

Simon, cited in W.Fery, J.Slate, 1991). As a result, I planned to find a suitable data set 

to check the effect of using digital features in the training set, which could help me 

realize the power of analytics in some degree. Finally, the data set I chose is called 

‘Letter Recognition Data Set’, has 20000 characters which were produced by 20 

randomly distorted and different fonts. And these 20 fonts could make up different 

character images and each of them would be identified as one of 26 English capital 

letters. During the whole process, I need to select 16000 data as training data and the 

rest of the data set as testing data, and after I finish training model, I can use the testing 

data to check the accuracy of my model. 

2   Method 

1) randomly extract data and divide it into training and test sets 

The dataset I chose has only one overall data, so as the title requires, I need to select 

16000 data as training data and the rest of the data as testing data which will be 

helpful to examine the accuracy of my model. In this section, I used the random 

sampling method to extract data to make the data predicted by my model more 

representative. In addition, I chose different data as training and test sets to prevent 



data overfitting. 

 
2) change the column name and convert string target values to numeric values 

First, I will show the attribute information of this datset. 

Letter capital letter (string) 

x-box horizontal position of box (integer) 

y-box vertical position of box (integer) 

width width of box (integer) 

high height of box (integer) 

onpix total # on pixels (integer) 

x-bar mean x of on pixels in 

box 

(integer) 

y-bar mean y of on pixels in 

box 

(integer) 

x2bar mean x variance (integer) 

y2bar mean y variance (integer) 

xybar mean x y correlation (integer) 

x2ybr mean of x * x * y (integer) 

xy2br mean of x * y * y (integer) 

x-ege mean edge count left to 

right 

(integer) 

xegvy correlation of x-ege with 

y 

(integer) 

y-ege mean edge count bottom 

to top 

(integer) 

yegvx correlation of y-ege with 

x 

(integer) 

According this form, the type of target values is string, I should convert them to 

numeric values at first, then the outputs can be hold by Tensor in Variables. 

3) data preprocessing 

Here I will show my trial process. 

⚫ Firstly I want to apply stratified sampling method to my first step, extracting 

data, to train a more accurate model. However, after I counted the number of 

each values of target columns, I found the number of different class almost the 

same both in training and testing sets, hence I realized that stratified sampling 

methods could make little attributes to improving testing accuracy. 

 

⚫ Then I read one pdf file called DecryptGISData camera form Papers for NN4, 

it told us that normalizing data over the range 0 - 1 for the network from logistic 



aspect can help to deal with the unreliable data and get more accurate prediction, 

so I tried to normalize training input data by columns. Importantly, we cannot 

normalize the target data because if we normalize the target data, we will get a 

Tensor hold outputs whose values are changing to 0 or 1 as a result of .long() 

function, and in that case our model will be become extremely inaccurate. 

However, after I normalized my training input data and testing input data, I 

found my model accuracy has not increase d, but dropped. Next part will show 

testing results. 

⚫ Also, this pdf file also told me to remove bias of lowest and highest values by 

using statistical Z function to reduce noise. I thought this method is feasible 

until I check the minimum value and the maximum value of the values of input 

data in training set and testing set. 

 

4) I used different activation function (sigmoid, tanh, relu) for hidden layer to train 

my model, and examine my model accuracy. 

5) Also, I tried to use different optimizer to train my model, which could help me to 

get a more accurate model. 

6) After reading HeurPatRed pdf file, I thought I could try to apply batch gradient 

descent method to training my model. And batch gradient descent is a method to 

calculate error for each data in the training set, and the model will be updated after 

all the training data is calculated, which could help us get a more stable error 

gradient and a more stable convergence point. Also this method reached the 

purpose of separating error calculation and model update process, which is 

conducive to the implementation of parallel algorithms. However, I found testing 

accuracy of my model representing a extremely low value after I use this method, 

and I was very confused about it and cannot figure out why. 

3   Result and Discussion 

1. Test with a few different simple parameters 

⚫ Results 

Test number Data 

preprocessing 

Number of 

neurons 

for hidden 

layer 

Learning 

rate 

Number of 

epoch on 

training 

Testing 

accuracy 

1 No 10 0.01 500 5.95% 



2 No 10 0.01 2000 19.23% 

3 No 14 0.01 2000 25.3%2 

4 No 14 0.01 5000 42.83% 

5 No 100 0.01 5000 63.52% 

6` Yes(normalize 

data) 

100 0.01 5000 16.98% 

⚫ Discussion 

From the results of above six tests, we can conclude that for my training model, with 

the increasing of the number of neurons for hidden layer, the testing accuracy of my 

model show an increasing trend as well. Also, the number of epoch on training is bigger, 

the testing accuracy will be higher. As a result, the number of neurons for hidden layer 

and epoch on training can affect the model accuracy. However, we can find an 

interesting fact that after I normalized data before training them, my model accuracy 

showed a decreasing trend, which made me confused. While the other day I read some 

information related to this data set, I found that every stimulus was converted into 16 

primitive numerical attributes and then scaled to fit into a range of integer values from 

0 through 15, so I thought that maybe lead to the situation in test 6. 

When comparing to the results from paper called Mixtures of Conditional Maximum 

Entropy Models, we can find with the rising number of attributes, the testing accuracy 

would represent a increasing trend, and I have to admit their model is better than me as 

most of the testing accuracy of their model are higher than mine, which could reach 

82.2% (Palov, popescul, Pennock, Ungar 2003). To improve my model, I still have lots 

of work to finish. 

 

2. Test with different activation function and different optimizer (all without data 

preprocessing) 

⚫ Results 

Test 

number 

Number 

of 

neurons 

for 

hidden 

layer 

Learning 

rate 

Number 

of epoch 

on 

training 

Type of 

activation 

function 

Type of 

optimizer 

Testing 

accuracy 

7 100 0.01 2000 sigmoid SGD 53.83% 

8 100 0.01 2000 tanh SGD 70.67% 

9 100 0.01 2000 relu SGD 76.9% 



10 100 0.01 2000 sigmoid ASGD 51.52% 

11 100 0.01 2000 sigmoid Adam 95.2% 

12 100 0.01 2000 sigmoid Adamax 94.88% 

⚫ Discussion 

From above 6 tests we can find that the activation function for hidden layer which called 

tanh or relu can make more attributes to training a more accurate model. Also, the 

optimizer called Adam or Adamax can make our model becaome extremely accurate, 

however, I thought these situation happened because these two optimizer could make 

my training data become overfitting. 

 

3. Using batch gradient descent 

Define input_size = 16, hidden_size = 100 , num_classes = 26, num_epochs = 500, 

batch_size = 5, earning_rate = 0.01 

Followiong pictures show the results 

 

 

 

 

 

 

 

 

 

 

 

 



4   Conclusion and Feature Work 

I changed different parameters like the number of neurons for hidden layer and the 

number of epoch on training to train my model, and I changed the activation function 

for hidden layer to train my model to, and also I changed the type of optimizer to train 

model as well. I applied all above methods to obtaining a more accurate model and 

some operations really did work. During my trial process, I found that normalizing data 

before training is useless to make training model predicate values more accurate. And also I 

thought I was failed to apply batch gradient descent method to training my model. So as for my 

future work, I should and I will work ahead on figuring out this problem and moreover I will try 

some other methods to improve my model. Moreover, in the future work, I want to apply bimodal 

distribution removal method successfully to training model, I found it is very interesting but sadly 

this time I am failed to turn theory method into real code and make it work. 

 

 

 

 

 

 

 

 

 

 

 

⚫ Reference list 

1. Gedeon, T. D. (1995, November). Indicators of hidden neuron functionality: the weight 

matrix versus neuron behaviour. In Artificial Neural Networks and Expert Systems, 1995. 

Proceedings, Second New Zealand International Two-Stream Conference on (pp. 26-29). 

IEEE.  

2. Gedeon, T. D., & Bowden, T. G. (1992). Heuristic pattern reduction. In 

International Joint Conference on Neural Networks (Vol. 2, pp. 449-453).  

3. Frey, P. W., & Slate, D. J. (1991). Letter recognition using Holland-style adaptive 

classifiers. Machine learning, 6(2), 161-182. 

4. Pavlov, D., Popescul, A., Pennock, D. M., & Ungar, L. H. (2003). Mixtures of 

conditional maximum entropy models. In Proceedings of the 20th International 

Conference on Machine Learning (ICML-03) (pp. 584-591). 

 


