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Abstract 

 

In this paper, we extend the concept of Shared Weights to Convolutional Neural Network in 

classifying the 26 letters in English alphabets. We found that the CNN model performed significantly 

better than the ordinary network which uses Shared Weights concept. The CNN model developed in 

this paper achieved 92% of accuracy while the Shared Weights concept only managed to achieve 

74.29% of accuracy. The paper also experimented on the effect of number of output channels and 

kernels in the CNN model. We came to the conclusion that the model performed better once we 

managed to find the optimum number of kernels. We also concluded that although higher number of 

output channels results better performance, further consideration is needed in order to decide if slight 

improvement in performance is worth the computation cost. The paper also drew comparisons with 

other papers which used the same EMNIST data set and discussed the difference in models built and 

their performance gap which mainly caused by the difference in structure of the network and 

technique used. 
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1. Introduction 

Letter recognition using a neural network is one of the most widely experimented topics in 

Computer Science. Many research papers acknowledge the vast interest researchers have in 

letter recognition (Guyon, et al., 1991). Modelling in a neural network also helps researchers 

to obtain new knowledge about design principles for letter recognition which is important for 

future research (Fukushima, 1992).  

 

The amount of interest in this topic motivated us to build a two-layer neural network to classify 

black-and-white rectangular pixel images as one of the 26 letters in the English alphabets. In 

our previous paper, we contributed by discussing and comparing two different methods in 

solving a letter recognition problem. The first method used is a simple two-layer neural 

network. The second method used is the Shared Weight concept introduced by Gedeon (1998). 

In previous experiment, we concluded that Shared Weight does not necessarily performs 

better than Two-Layer Network as one of the consequences of the method is that it is hard to 

find the right compression-decompression function. 

 

In this paper, we tried to extend the concept of Shared Weight (Gedeon, 1998) to Deep 

Learning by building a simple Convolutional Neural Network to classify the 26 letters in the 

English alphabets. Convolutional Neural Network (CNN) has shown much success in 

achieving translation invariance for image processing tasks. The success is largely related to 

the weights sharing, local connectivity and max-pooling in the CNN architecture which help 

to reduce the number of parameters in the whole system which results in a more efficient 

computation in the classification process (Abdel-Hamid, et al., 2012). This paper will discuss 

on how to implement a simple CNN on an image data set of English alphabets and the result 

of the implementation. The paper will further discuss about the result of experimenting with 

the number of kernels and channels in the network. Lastly, it will draw comparison between 

the experiment we conducted and other experiments which used the same data set as us. 
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2. Methods 

2.1. Data set 

In the previous experiment, we used the Letter Recognition data set available at UC Irvine 

Machine Learning Repository (Slate, 1991). The data set consists of 20,000 black-and-white 

pixel images of the 26 letters in the English alphabets. The distinct stimuli of the images were 

converted into 16 primitive numerical attributes which were written in the form of integers.  

 

This time, we are using a real-life image data set of handwritten letters. This data set is called 

EMNIST data set (Cohen, et al., 2017). It is an extension of the MNIST data set which is 

widely used for image classification problem. EMNIST data set contains more complicated 

data such has handwritten English alphabets (used in this paper) and a combination of both 

alphabets and numbers whereas MNIST only has numerical data which is only suitable for 

digit classification (10 classes). The purpose of the model that we built is to classify the images 

in the EMNIST data set into the correct letter, hence classifying the images into 26 different 

categories 

  

2.2. Activation Function 

In our previous work, we used the Shared Weight concept introduced by Gedeon (1998). This 

method was expected to have better results compared to the usual two-layer neural network 

as by using the Shared Weight concept, we would be able to reduce the space between network 

weight configurations. A Shared Weight Network works by making the weights from input 

layer to hidden layer and the weights from hidden layer to output layer to be identical. As a 

consequence of the identical weights, in theory, the compression function then must be 

directly invertible. This means that the network should perform better than standard networks 

as the network is able to find ‘the inverse function’ instead of producing the approximate of 

‘the inverse function’. In our experiment, we implemented the Shared Weight concept using 

Rectified Linear Units (ReLu) activation function. ReLu Activation Function has been quite 

widely used in recent deep learning networks. Research has shown that ReLu Activation 

Function is suitable to train large networks as it performs faster training and allows for better 

generalization (Zeiler, et al., 2013). 

 

In this experiment, we still used ReLu as the activation function in our CNN as well as Log 

Softmax Activation Function which was used in our two-layer neural network. Softmax 

Activation Function is standard for 1 of K classification problems (Bishop, 1995). It is ideal 

for multiclass classification problems as the function ensures that every output produced by 

the network is all between zero to one and that they all sum to one on every timestep which 

means the function produces probabilities of the observed object being a certain object at a 

given frame (Graves & Schmidhuber, 2005). 

 

2.3. Structure of the CNN 

In order to reduce under-fitting of the network and to make sure that the CNN we built can 

increase the network’s feature learnability while keeping the CNN as simple as possible, we 

built a CNN with two convolution layers followed by a dropout and then two fully connected 

layers. The reason we used dropout is to reduce overfitting. Dropout is a technique which 

randomly drop units along with their connections from neural network during training, hence, 

prevents units from adapting too much to the data set. This results in better regularization and 

improved performance on supervised learning (Srivastava, et al., 2014). We also used Max-

pooling, which is a form of non-linear down sampling in the Pooling Layer in order to reduce 

overfitting and reduce the number of parameters and computation in the network. 

 

 



2.4. Number of Channels and Kernels 

The output channels represent the number of features we want to identify. We experimented 

by using 10, 20, 30, 40 and 50 output channels for the first convolution layer and 20, 40, 60, 

80 and 100 output channels for the second convolution layer. The purpose of this experiment 

is to investigate whether learning as many features as possible always improves the 

performance of the network. 

 

Kernel is a set of shared weights and biases. We experimented with the kernel size to 

investigate whether the more details we catch (the smaller the kernel size is), the better the 

performance of the network will be. We experimented with kernel size of 3, 5 and 7. 

 

3. Results and Discussion 

3.1. Experimenting with output channels and kernel 

Below is a table of results of a CNN with 10 output channels in Layer 1 and 20 output 

channels in Layer 2 with different kernel sizes (Table 1). 

 

Table 1 

Kernel size Average Loss Accuracy 

3 0.4073 87% 

5 0.4004 87% 

7 0.5009 84% 

 

As we can see from the table above, the accuracy improves a little bit when we reduce the 

size of the kernels to 5 from 7. The results indicate that the smaller the kernel size which 

means the more details we try to capture, the better the performance of the network is. 

However, the improvement will stop once it reaches the maximum point and after that, using 

smaller kernel size will not be useful as we can see from the performance result of the CNN 

network with kernel size 3 which is roughly the same as the performance of the network with 

kernel size 5. From this experiment, it seems that we can conclude the optimum size of kernel 

in this case is 5. 

 

Below is a table of results of a CNN with kernel size of 5 and different output channels 

(Table 2). 

 

Table 2 

Experiment 

No. 

No. of output 

channels in 

Layer 1 

No. of output 

channels in 

Layer 2 

Average Loss Accuracy 

1 10 20 0.4004 87% 

2 20 40 0.2755 91% 

3 30 60 0.2513 91% 

4 40 80 0.2437 92% 

5 50 100 0.2289 92% 

 

The results indicate that the more features we set the network to learn, the better the 

performance of the network is. However, as we can see from the table above, while there is 

quite significant improvement from Experiment 1 to Experiment 2 as the average loss 

decreases by almost 50% and the accuracy increases to 91%, there is not much improvement 

from Experiment 2 to Experiment 5. We may conclude that considering the computation cost, 



increasing the number of output channels for a very small improvement such as above may 

not be worthwhile. 

3.2. Results comparison with previous work 

In our previous work, when implementing the Shared Weight concept, our network’s 

testing accuracy was 74.29%, just slightly higher than a regular Two-Layer Network’s 

accuracy of 71.19%. This result made us to conclude that Shared Weights does not 

necessarily improve the network’s performance. However, by extending the Shared 

Weight concept to Convolutional Neural Network, the performance of the network is 

significantly better as the accuracy ranges between 87% to 92%. This significant 

improvement in performance may be caused by the structure of the CNN which allows 

the network to learn more efficiently about the distinct features of each alphabet.  The 

network benefits from things such as Max-pooling and Dropout which help to reduce 

overfitting or underfitting problems while reducing the number of free parameters and 

computation cost. Whereas, the success of the Shared Weight concept in the previous work 

depends on finding the right compression-decompression function which proved to be 

difficult. 

 

3.3. Results comparison with other papers 

There are other papers that use deep learning and the EMNIST data set in order to classify 

the 26 letters in the English alphabets. Meany & Arola (2018) used a three-layer CNN 

which feeds into an LSTM layer. Just like our model, the model they developed also used 

Max-pooling and Dropout and achieved 77% accuracy whereas out model achieved 92% 

accuracy. This is unexpected because the model they developed should have performed 

better considering the depth of their model and the additional LSTM layer. This could be 

caused by them trying to classify word images instead of characters. 

 

Other than building a network with more depth, another way to improve the performance 

of a Deep Convolutional Neural Network (DCNN) is by implementing CUDA to reduce 

computation time an achieve high accuracy (Singh, et al., 2017). By implementing CUDA, 

Singh, et al. (2017) managed to achieve 99.62% of accuracy with the computation time of 

8 minutes and 56 seconds using 5 layered DCNN on GPU with 30000 iterations. This 

implies that in order to significantly improve our model, it seems that we need to 

implement new technique such as the one used by Singh, et al. (2017). 

 

4. Conclusion and Future Work 

In conclusion, we found that extending the concept of Shared Weights to Convolutional 

Neural Network improve the performance of the network significantly. This could be caused 

by the network benefitting from the structure of the CNN such as Max-pooling and Dropout 

which help to reduce overfitting or underfitting problems and reduce the number of free 

parameters and computation cost. Further experiment to finetune the CNN found that an 

optimum kernel size will improve the performance of the network. We also found that the 

larger the number of output channels which means the more features we set the network to 

learn, the better the performance of the network will be. However, we may want to consider 

if the slight increase in performance is worth the extra computation cost. 

 

For future work, we may want to observe other parameters that can impact the performance 

of CNN. An experiment on these parameters, such as the stride and padding of the network 

may allow us to further finetune our model. 
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