Enhancing Artificial Neural Networks for Thyroid Disease Diagnosis

William Shen

Research School of Computer Science, The Australian National University
william.shen@anu.edu.au

Abstract. Thyroid disease is a disease that restricts our ability to maintain body metabolism, and affects
over 12% of Americans over their lifetimes [1]. Hence, it is important to develop general techniques for
accurately and effectively predicting and preventing such diseases.

Artificial Neural Networks (ANNs) have been widely used in the past decades for tackling problems in
pattern recognition and prediction. ANNs are powerful in that they can generalise and identify patterns
in the data despite having no prior knowledge or assumptions about the data itself.

We investigate several methods and improvements for training a feed-forward neural network in predicting
binding protein levels for thyroid disease - including pre-processing, evaluation techniques, network design
using genetic algorithms, and network reduction techniques.

Our proposed neural network show a large improvement in prediction accuracy of over 3% versus the
instance-based learning algorithms that Wilson and Martinez demonstrate in [6].

Keywords: artificial neural networks, network reduction, thyroid disease, activation function, cross vali-
dation, genetic algorithms

1 Introduction

Thyroid disease is a non-fatal, yet serious problem caused by the low (hypothyroidism) or high function (hyper-
thyroidism) of the thyroid gland. It is usually quite difficult to diagnose thyroid disease, as there is a multitude
of symptoms which may also be seen in other diseases. In fact, over half of those with thyroid dysfunction
remain undiagnosed [2]. Thus, it is extremely important to provide physicians with clinical decision support
systems (CDSS) that assist them in diagnosing all kinds of diseases.

Machine learning techniques, such as Artificial Neural Networks (ANNs) are recognised as non-knowledge
based CDSS as they make decisions by evaluating and eventually learning from examples. This is in comparison
to knowledge based CDSS which explicitly encode the rules and associations between data, usually supplied by
a domain expert. [3].

ANNSs have several advantages over traditional machine learning algorithms, such as logistic regression or
support vector machines, the most notable being that they can learn the functional form of the data themselves
rather than the form being explicitly specified through a basis function, or a kernel, for example. One major
disadvantage of ANNs, however, is that they can be slow and unreliable to train. ANNs are usually trained
through the back-propagation method, where we feed the data through the network and adapt the weights by
propagating the error gradients backward. Moreover, we cannot determine the best architecture for a neural
network, as Gedeon and Harris states, a priori [4].

There are several techniques we can apply to improve the generalisation and performance of our ANNs
to overcome these challenges. In section 2, we discuss the structure of the data set and the pre-processing
techniques we can apply to assist the network to learn better. In section 3, we discuss the model design of our
network, including activation and loss functions, and also discuss evaluation techniques for unbalanced data
sets. In section 4, we discuss a genetic algorithm for determining a good choice of hyperparameters for training
our network. In section 5 we consider network reduction methods aimed at improving the generalisation and
performance of our neural network. Finally, in section 6, we discuss the results of the final implementation of
the neural network and compare the results to those achieved the instance-based learning algorithms [6] that
Wilson and Martinez demonstrate.

Although our main goal is to improve binding protein level prediction for thyroid disease diagnosis using
ANNS, the methods we discuss are generally applicable to a data set in any domain. Hence, we have attempted
not to tailor our design and evaluation choices very specifically to the case of thyroid disease.

2 Data Set and Pre-Processing Techniques

We use the binding protein data found in the Thyroid Disease Data Set/on the UCI Machine Learning Repository.
The data represents a classification problem where we must identify whether a patient has increased, decreased,
or normal binding protein levels (3 classes) based on 22 discrete features and 7 continuous features.

We have chosen this data set for many reasons. Firstly, there is a mix of discrete and continuous variables
— leading to interesting pre-processing techniques. Secondly, the data set has a large proportion (~33%) of
missing values. This means that we must either discard any data with missing values, which is undesirable, or
investigate methods to impute the missing values.

Finally, there are limited examples for diagnoses with increased or decreased binding protein levels. This
means that we must fully learn the patterns from the limited data we have for these classes. Moreover, we must

https://archive.ics.uci.edu/ml/datasets/Thyroid+Disease

have a good distribution of classes when training the network to avoid it from generalising samples to one class.
Since the data set is unbalanced, we also need to consider different evaluation methods instead of accuracy such
as recall (sensitivity), F1, and Cohen’s kappa.

2.1 Unbalanced Data Set
Table 1: Class Distribution of Training and Test Set

Train Test,
Increased 117 23
Decreased 9 5
Normal 2637 928
Total 2800 956

As shown in Table 1, our data set is very imbalanced, as there is a limited number of examples for increased
and decreased binding proteins in comparison to normal levels.

If we were to train our network on all of the training data, it would be very possible for the network to
generalise to the 'Normal’ class, especially if we were to apply an optimisation algorithm such as stochastic
gradient descent with a single sample or mini-batches. This is not very desirable, as we want to learn the subtle
patterns and classify the increased and decreased binding protein levels correctly. As we shall see later, we can
improve the predictive accuracy of the network by only training on a fraction of the data from the ‘Normal’
class.

2.2 Missing Values

Approximately 33% of the data in the training set have at least one missing value. Since it is unfeasible to train
a neural network on samples that have missing data, one method we could use to remedy this issue is to simply
remove all samples with missing values. This is called listwise deletion. However, if we were to do so with the
training set, we would see a significant decrease in the number of examples for each class by 18.8% (increased),
22.2% (decreased) and 31.3% (normal).

We ideally do not want to delete these samples, as they could provide useful information for further pre-
processing or for training our network.

2.3 Imputation
Imputation is the process in which we replace (i.e. ‘impute’) missing data values with substituted values [7].

1. Mean/Median/Mode substitution: We replace any missing value with the mean/median/mode of the
given variable for samples of the given class. These are examples of single value imputation. This can be
problematic for variables where the distribution is not unimodal. Moreover, this increases the bias of our
training data towards a specific value and may lead us to overfit. However, we can add random noise to
soften this issue.

2. Multiple Imputation: In single imputation, imputed values are treated as equal to non-imputed data -
potentially leading to a strong bias in the data. Multiple imputation solves this by introducing variability by
averaging the single imputations across several imputed data sets. Evidently, multiple imputation is costly
and complex.

We chose to use mean imputation, as the distributions of the relevant features, as shown in Figure [1| were
generally unimodal, Gaussian, and not very skewed, though there were several outliers. If the distribution of the
features were skewed, then it could be a better idea to use median imputation. Moreover, a simple experiment
as described in Appendix shows that mean imputation leads to the best network predictive performance.

Fig. 1: Distribution of Continuous Variables in Thyroid Data Set

TSH T3 TT4 T4U FTI
300 350 4 250 - 350 -
2000 - 4 300 4
250 2001 300
250 250 4
1500 200
2001 1504 200 -
150 4
1000 150 100 150
100 A
100 100 A
500 - 50
504 50 50 4
0 0- 0- 0- 0-

2.4 Outlier Removal

We noticed that there were several outliers in the data set which could disturb the neural network during
training. Some of these values were blatantly incorrect - e.g. the age of patient was 455. We removed samples
of a variable & which were more than ¢ standard deviations away from the mean.

x; — T > c-std(x) (1)

Where © = {z1, ... ,2,}, T is the mean of z, std(z) is the standard deviation of x, ¢ is a constant which
indicates how far away from the std we remove samples.

We decided to only remove outliers for samples that were in the ‘normal’ class and set ¢ = 2.5. By doing so,
we encompass 98.7% of the values that lie around the mean of each variable and retain the very limited training
data that we have for the other classes. The removed samples were then added to the test set.

2.5 Feature Scaling for Continuous Variables

The range of the continuous features in the data set vary significantly. Without normalising or scaling, we
cannot guarantee the stable and quick convergence of our ANN. There are several methods we can use to solve
this problem:
z—min(x)
max(z)—min(z)’
rescales all x; to be in [0, 1]. B
— Mean Normalisation: =’ = m,
feature to have a mean of 0. Thus, we will have a mix of positive and negative values after normalising.
— Standardization: 2’ = this standardizes the feature to have zero-mean and unit-variance and can

— Max-Min Scaling: 2/ = where z is the original value and 2z’ is the normalized value. This

where T is the mean of the variable x. This normalises the

r—x
std(z)?
be very effective when the distribution of the feature is relatively Gaussian. However, outliers can cause the
majority of the values to ‘scale’ to a very small range.

We chose use standardization as the distributions of our continuous features were relatively Gaussian as
shown in Figure [I} especially after imputation and outlier removal. Moreover, through evaluating our model
using K-Fold stratified cross-validation, as shown in Appendix we found that standardization gave the best
prediction performance.

2.6 Encoding for Discrete Variables

For the true and false variables (e.g. sick, pregnant, goitre), we encode false as 0 and 1 as true. For ‘sex’, we
encode female as 0, male as 1 and unknown as 0.5, representing a neutral value between female and male.
We encode the target classes increased binding protein, decreased binding protein, and normal as 0, 1 and 2
respectively.

3 Model Design

3.1 Neural Network Architecture

With all redundant features removed, there are 21 features for each data point. Thus, we model our network
with 21 input neurons each taking a feature from our sample. Since we must classify each sample to one of
three classes, our network will have 3 output neurons. We will take the neuron with the maximum output to be
our predicted class. To determine a ‘good’ number of hidden layers and hidden neurons we will use a genetic
algorithm, as we discuss in Section 4.

3.2 Activation Functions

We consider the logistic sigmoid, hyperbolic tan (tanh), rectified linear unit (ReLU) and the leaky rectified
linear unit (Leaky ReLU) activation functions. We theorize that using the leaky ReLU will give us the best
results, as it represents no ‘information loss’ and solves the problem of ‘dying’ ReLUs when the gradient of the
ReLU is 0 for input less than 0. However, given that the size of our network is relatively small, we may not
encounter dying ReLUs.

Our initial experiments, as seen in Appendix showed that using the (leaky) ReLU activation function
lead to better results than if we used the logistic sigmoid and helped our network converge faster.

3.3 Loss Function

We use the cross-entropy loss as our loss function as we are tackling a multi-class classification problem. Cross-
entropy measures the ‘distance’ between what the neural network’s belief of the output class is, and what the
actual target class is. Cross-entropy loss is a much better choice than mean squared error for classification
problems as the computed gradients stay relatively large in comparison to the gradient for squared error as the
network converges.

3.4 Evaluation Function

The Paradox of Accuracy The accuracy paradox [I0] states that “predictive models with a given level of
accuracy may have greater predictive power than models with higher accuracy”. This is especially true for
unbalanced data sets. Consider the following confusion matrices for 1085 samples:

Table 2: Accuracy ~ 95.8% Table 3: Accuracy ~ 97.05%
increased|decreased [normal increased |decreased [normal
increased |20 0 5 increased |1 0 24
decreased|0 9 1 decreased|0 2 8
normal |40 0 1010 normal |0 0 1050

Clearly the predictor that produced the results in Table 2 is more desirable than the predictor that produced
the results given by Table 3, as there are far less false negatives and hence far more true positives for the
‘increased’ and ‘decreased’ classes. Hence, we must come up with a more informative measure than accuracy to
evaluate our neural network.

Precision, Recall, F1 Precision defines the exactness of our classifier (ratio of true positive predictions to
total number of positive predictions), while recall defines the completeness of our classifier (ratio of positive
predictions to total number of positives). We can combine these together as the F1 score which conveys the
balance between precision and recall. F} = 2 - ;%m

Although these measures provide a much better measure of model performance for unbalanced data sets
than accuracy, we would be left with a F1 score for each class, making it more difficult to evaluate the overall
performance of a network with a single value. Although we could take the mean of these scores for each class, this
could give a skewed result as the precision, recall and F1 score for the ‘normal’ class would be much higher/lower
than that of the other classes.

Cohen’s Kappa [I1], x, measures the agreement between two ‘judges’ which classify samples into one of
several classes. In our case, one judge is our trained neural network, and the other is us, the ‘teacher’. where we
provide the true target class. In more rigid terms, Cohen’s kappa describes the number of agreements correct
against the number of agreements expected by chance through a single value .

_fO_fc
K_foc (2)

fo is the number of agreements between the ‘judges’, f. is the total expected frequency for the number of
agreements by chance over each class, and IV is the total number of decisions. Clearly, the larger the s is, the
better. We can trivially show x = 1 for 100% accuracy, and x = 0 if all samples have been classified to one class.

We have used Cohen’s Kappa along with accuracy in our experiments to determine the performance of
the neural network across different pre-processing and network architecture decisions. Although we could have
introduced our own measure for determining the effectiveness of our classifier for the thyroid data set by
penalising false negatives harshly, we use Cohen’s kappa as it is more applicable to any unbalanced data set.

3.5 Training

To train our network, we use batch gradient descent. Although batch gradient descent is much more computa-
tionally expensive compared to stochastic gradient descent, it leads to a smoother traversal of the error manifold
towards a minima, which could be beneficial. Moreover, it is less susceptible to the noise of the data feed to the
optimiser at each step. Since our dataset is unbalanced, using an optimiser such as stochastic gradient descent
could also lead the network to generalise to one class.

To evaluate the initial design choices of our network, we used stratified K-Fold cross validation, an extension
to vanilla K-Fold cross validation. The folds in stratified K-Fold are generated in a way such that each is a good
representative of the whole data set. This is vital when we have unbalanced data sets, as it ensures that each
fold contains at least one sample of every class.

We train on the entire pre-processed training set, giving a test set ratio of 83%. The main reason for this
high percentage is that we must limit the number of samples of the ‘normal’ class, as discussed in Section 2.1,
to prevent the network from generalising to one class.

4 Genetic Algorithm for determining Network Hyperparameters

As Peck et al. discuss in [12], genetic algorithms are “well suited for searching in a large parameter space” as
they “explore the parameter space and exploit the similarities between highly fit candidate solutions”. Thus,
genetic algorithms are applicable to several choices we must make when designing a neural network, such as
input feature and hyperparameter selection.

We consider using a genetic algorithm to determine the number of hidden layers, number of hidden neurons,
activation function, and learning rate for our neural network. These hyperparameters are usually very difficult
to select, and often much experimentation is required to determine a good choice. As Gedeon and Harris state
[4], we cannot determine the best architecture for a network ‘a priori’.

4.1 Chromosome and Gene Encoding

Our chromosome contains four genes: the number of hidden layers, number of hidden neurons, activation func-
tion, and learning rate in order. Note that we represent the learning rate, which we limit to (0,1], as an
integer for simplicity’s sake. Our initial experiments representing the learning rate using the IEEE Standard
for Floating-Point Arithmetic (IEEE 754) lead to undesirable learning rates when performing crossover and
mutation.

We encode these values using Gray coding. Gray coding alleviates the Hamming CIiff issues encountered
when using traditional binary coding, as it “ensures the Hamming distance between the representation of
successive numerical values is one” [I3]. By using Gray coding, we can assure that only a small change in the
chromosome/gene is required for a small change in fitness.

4.2 Initialisation, Fitness and Training

Following our initial experiments training the neural network and for ease of binary transformations, we decided
to limit the allele of each gene to the following domains:

Number of hidden layers € {1, 2, 3}

Number of hidden neurons € {5,6, ... ,63}

— Activation function € {Sigmoid, tanh, ReLU, Leaky ReLU}
Learning rate € {0.01,0.02, ... ,1.0}

We set our population size for our problem to be 30 to ensure we can encapsulate enough variety in the
hyperparameter selection for each individual. To initialise the population, we randomly sample from the domain
of each hyperparameter.

An appropriate measure for fitness for our problem of predicting thyroid disease is the Cohen’s kappa on
the test set. Accuracy would not be an appropriate measure as discussed in Section 3.4, due to the paradox of
accuracy.

To train each individual network, we adopt early stopping (i.e. we stop training when the test loss is increasing
for n epochs, we set n = 15) and limit the maximum number of epochs to 1500. This is more ideal than setting
a hard limit for the number of epochs as it reduces the chance for the network to overfit to the training data.

4.3 Crossover, Mutation, and Selection

We considered using one-point, two-point and uniform crossover to produce offspring. We decided to use uniform
crossover as it is more suited to the transformations to the genes we require, and because it is usually more
ideal for smaller populations as De Jong and Spears suggest in [I4], because it can be ‘less’ disruptive to the
genes. We produce 9 new individuals (children) in each generation.

Mutation is important to maintain the diversity of the characteristics within the population. It allows us to
avoid local minima by preventing the population from being too similar. We randomly flip the bits within the
chromosome of each individual with a probability of 0.01.

When selecting which individuals to produce offspring, we use proportional selection. This gives a higher
probability of individuals with a higher fitness to reproduce leading to offspring with similar/increased fitness,
whilst also giving those with lower fitness a chance to reproduce, keeping the population diverse.

We maintain our population size of 30 by using elitism and tournament selection. We ensure that the top
10 individuals in the population survive to the next generation (elitism), and use tournament selection with
a tournament size of 5 to choose the remaining 20 individuals. This ensures there is generally a good mix of
characteristics within our population, and that we avoid populations that have similar chromosomes.

We terminated the genetic algorithm once we did not see any more improvements in the maximum fitness
in the population. We found that 10 generations was sufficient in most situations.

4.4 Results

We observed k = 0.4 and an accuracy of 98.4% in the most fit individual in our population following ten
generations of our genetic algorithm. The selected hyperparameters were 2 hidden layers, 32 hidden neurons in
each hidden layer, the ReLLU activation function, and a learning rate of 0.329. Figure [2| shows the overall fitness
of the population over this specific run of the genetic algorithm.

This represents a moderately substantial x and accuracy increase over our best network trained with our
hand-picked hyperparameters (2 hidden layers, 12 hidden neurons, ReLLU, Ir=0.4) which achieved x = 0.35 and
an accuracy of 97.4%. In most situations, our genetic algorithm found a choice of hyperparameters that lead to
similar or better performance than our network trained with hand-picked hyperparameters.

Fig. 2: Fitness of Population over Time

—— Mean Fitness
—— Min Fitness
—— Max Fitness

0 2 4 6 8 10
Generation

5 Network Reduction Techniques

It is often very difficult to determine the ideal number of neurons for the hidden layers in our neural networks.
Even if our network performs well with a large number of neurons, it could be the case that many of them are
performing the same function and hence can be pruned. Moreover, to train networks successfully and efficiently,
we usually need to use more hidden neurons than the minimum number actually required.

Network reduction has many advantages. It reduces the amount of memory our network takes up and leads
to less computational power required to make new predictions. More importantly, network reduction helps our
network generalise better as by removing excess units, we can reduce any overfitting to the training data.

We discuss Gedeon and Harris’ notion of distinctiveness [4], and investigate how we could apply pruning
using distinctiveness for networks trained for unbounded activation functions (e.g. ReLU, leaky ReLU).

5.1 Distinctiveness

Distinctiveness measures how similar two hidden units are in the input space, by computing the angle between
the functionality of the two units in input space using an angular range of 0-180°. That is, we must first normalise
the weight vectors of the hidden neurons such that we use an angular range of 0-180°, then we can calculate
the angle between each pair of weight vectors.

Gedeon and Harris propose that an angular separation of up to about 15° or over 165° between two hidden
units is considered ‘sufficiently similar’ and hence one of the corresponding units can be pruned. The weight
vector of the hidden unit which is being pruned is added to the weight vector of the unit that remains.

Normalising Recall that the logistic sigmoid squashes all activations between 0 and 1, and has a ‘center’
of 0.5. Hence, to use an angular range of 0-180° we can simply subtract 0.5 element-wise from all the weight
vectors. Similarly, the hyperbolic tangent tanh squashes all activations between -1 and 1 and has a ‘center’ of 0
and hence we do not need to normalise. On the other hand, we cannot say the same for unbounded activation
functions such as the ReLLU — there is no ‘center’ point for these activations.

To solve this issue, we propose that sampling and using the mean of the activations of the hidden units
during training is a sufficient metric for determining the ‘center’ of unbounded activation functions.

5.2 Results

For the logistic sigmoid and hyperbolic tan, pruning non-distinct hidden neurons usually improved the general-
ity of the network as expected — k increased following pruning as shown in Tables 3 and 4.

Table 4: Before pruning, accuracy = 96.3%, x = 0.27 Table 5: After pruning, accuracy = 96.5%, x = 0.282

increased|decreased|normal increased|decreased [normal
increased |20 0 5 increased |20 0 5
decreased |0 0 5 decreased |0 0 5
normal |94 0 2715 normal |84 0 2721

However, for the ReLLU and leaky ReLU, our experiments showed mixed results as shown in Tables 5 and
6. In most situations, pruning hidden units decreased the predictive performance and generalisation of our net-
work. Sometimes, after pruning, the network classified all samples to one class leading to k = 0. However, in
rare scenarios, pruning helped the network classify more precisely to each class by removing false positives and
false negatives leading to a higher Cohen’s kappa.

Table 6: Before pruning, accuracy = 97.1%, k = 0.30 Table 7: After pruning, accuracy = 98.8%, xk = 0.22

increased|decreased|normal increased |decreased|normal
increased |17 0 8 increased |4 0 21
decreased |0 1 4 decreased |0 1 4
normal |68 2 2739 normal |5 4 2800

We theorize that adjusting the conditions (tolerance) of < 15° and > 165° for the angular separations could
solve this issue, as by using the original conditions we prune out approximately 50% of the hidden neurons when
using a unbounded activation function. However, it is more likely that using the mean of the activations as an
approximation of the ‘center’ of the activation function is not an ideal metric. Our experiments show that the
activation means shift around constantly between different training runs.

6 Results and Discussion

To train our final network we applied mean imputation and standardization with a outlier constant of 2.5 as
described in the pre-processing section. For our hand-picked hyperparameters, we used two hidden layers with
12 hidden neurons in each layer, the ReL U activation function, a learning rate of 0.4, and a L2 regularisation
of 0.03. We decided this through experimentation with different hyperparameters as seen in the Appendix.
Moreover, using the ReLLU allowed our network to converge must faster than if we had used the logistic sigmoid,
and also gave marginally better results as seen in Figures 3 and 4. This network achieved a best accuracy of
97.4% and a Cohen’s kappa of 0.35 on the test set.

Pruning on this specific network lead it to classify all test samples to a single class giving k = 0 due to
the reasons as outlined in section 5.2. However, in most situations, our network achieved an accuracy of about
97%, kappa of about 0.28 and very insubstantial improvements, if any, through pruning using distinctiveness.
However, this represents a significant improvement over the baseline accuracy of 95% and Cohen’s kappa of 0.22.

Fig. 3: Typical graphs for training with ReLU

Loss of Network Accuracy of Network Cohens Kappas of Network
— Train| 1907 r 08 o
1.2 —— Test
80 4
1.01 s 0.6
0 0.8 > 607
%) O
S o ¥ 0.4 1
0.6 1 S 40 A
)
0.4 1 * 0.2 1
L\ 201 —— Train —— Train
0.2 7 0. —— Test 0.0 1 J —— Test
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
Epoch # Epoch # Epoch #
Fig. 4: Typical graphs for training with Sigmoid
Loss of Network Accuracy of Network Cohens Kappas of Network
—— Train 08 1 0.8 1
0.8 A — Test
%% 0.6 1
0.6 < 94 1
@ 0
3 € 924 < 0.4
0.4 1 o
£ 904
0.2 1
0.2 1 K 88 1 —— Train —— Train
86 — Test 0.0+ — Test
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
Epoch # Epoch # Epoch #

As described in section 4, the best individual trained using our genetic algorithm achieved an accuracy of
98.4% and a Cohen’s Kappa of 0.40. In most situations though, our genetic algorithm would find a network
that had at least the same performance as that of the networks with hand-picked hyperparameters. No hidden
units were pruned on the networks trained using the genetic algorithm. We believe this is because we applied
early stopping rather than training with a fixed number of epochs, but leave this for further investigation.

Table 8: Neural Network Typical Performance on Test Set

Base NN|NN + Limited Pre-processing| NN + Pre-processing| NN + Pre-processing + Genetic
Accuracy| 98.94% 95% 97% 98%
K 0 0.22 0.28 0.35

Note: NN = neural network, we have not included pruning as it did not improve the results in almost all
scenarios. Moreover, no neurons were pruned with the final network taken from the genetic algorithm.

6.1 Comparison

Wilson and Martinez propose heterogeneous distance functions that handle both discrete (categorical) and con-
tinuous variables for instance-based learning algorithms [6]. They used a K-nearest-neighbour classifier with
k = 1 and compared the results achieved on several data sets, including binding protein for thyroid disease,
using different distance functions such as the Euclidean distance and the Heterogeneous Value Difference Metric
(HVDM). All ‘pre-processing’ to the data set was achieved through the distance functions themselves.

Table 9: Average Accuracy using 10-Fold Cross-Validation [6]

Euclidean| HOEM|HVDM |DVDM|{IVDM|WVDM
Average Accuracy|94.89 94.89 |95.00 |94.86 (95.32 [95.29

The highest accuracy of 95.32% was achieved using the Interpolated Value Difference Metric (IVDM) distance
function where continuous values are discretised into several bins. We note that these accuracies are very similar
to our baseline accuracy of 95% — this may suggest that neural networks are better suited to the task of predicting
binding protein levels for thyroid disease.

Our final neural network trained using a genetic algorithm achieved a classification accuracy of 98.4% on
the raw test set, representing a 3.08% and 3.51% improvement over nearest neighbours with IVDM and the
FEuclidean distance respectively.

We believe that our neural network is a better choice than instance based learning algorithms with improved
distance functions for many reasons. First of all, there is the improvement in classification accuracy for our
neural network which we believe is due to the richer feature space of the data set (21 features). Instance-based
learning algorithms often suffer when the dimensionality of the data is high (curse of dimensionality), mainly
due the difficulty of effectively determining distance in multiple dimensions.

Moreover, instance-based learning algorithms make predictions by comparing a new sample with all training
instances. Although these algorithms do not require any training, it is evident that making predictions is very
computationally expensive. On the other hand, although neural networks take a significant time to train, they are
very quick at making predictions. Thus, it is much more achievable to deploy a trained neural network, especially
on devices with limited computational power or applications that require predictions on a very frequent basis.

7 Future Work

More pre-processing techniques, evaluation methods, and network reduction experiments should be investigated
and carried out in the future. We only considered single imputation methods, which could lead to a strong bias
in the dataset. Future work should experiment with multiple imputation methods leading to more noise in the
imputed data.

In this paper, we briefly discussed precision and recall as potential metrics for evaluating our model, but
decided against them as they did not give us a single value to work with. Future work should consider how
we could combine precision, recall and the F1 score into a single metric, perhaps by considering increased and
decreased binding proteins as a single class or weighing each class more than the normal class.

We believe that better results could be discovered if feature selection and input pre-processing were to be
considered as parameters in our genetic algorithm. However, this would greatly increase the search space and
increase computational requirements whilst only seeing very moderate improvements in performance.

Finally, we were relatively unsuccessful in finding a good metric for applying distinctiveness in pruning
hidden units. We will need to consider and evaluate if it is possible or feasible to come up with a better metric
or investigate how using bounded ReLUs [§] could help us reduce the size and hence improve the generalisation
of our network.

8 Conclusion

In this paper, we have shown the process for designing, training, improving, and evaluating a neural network.
Firstly, we motivated the thyroid disease dataset and discussed methods to pre-process the variables, including
imputation, outlier removal and normalisation techniques. We also decided the pre-processing techniques we
would use through an analysis of the distribution of the variables and simple experiments using K-Fold Stratified
Cross Validation.

Next, we considered the design of our neural network including the architecture, loss function and evaluation
mechanisms. We also considered and discussed different activation functions, demonstrating each’s advantages
and disadvantages. More importantly, we presented the paradox of accuracy and introduced Cohen’s kappa as
a more reliable evaluation technique than accuracy which allowed us to evaluate the design decisions we made
more effectively.

Then, we demonstrated a genetic algorithm for determining a good choice of hyperparameters (number
of hidden layers and neurons, activation function, learning rate) for our neural network. We briefly discussed
the structure of the chromosome, crossover, mutation and selection operations used, along with the results we
achieved.

In Section 5, we examined network reduction techniques — specifically, the notion of distinctiveness. We
showed that pruning non-distinct hidden units for bounded activation functions (sigmoid, tanh) improved the
generalisation of the network and increased the accuracy and Cohen’s kappa. We proposed to take the mean
of the activations as the ‘center’ for normalisation for the unbounded activation functions (ReLU, leaky ReLU)
and demonstrated that it was not a very good metric as it decreased the accuracy and Cohen’s kappa in most
situations.

Finally, we presented the results of our final neural network and compared them against the improved distance
functions Wilson and Martinez demonstrated for instance-based learning algorithms. Our initial results are very
promising and demonstrate the importance of effective pre-processing and evaluation techniques along with the
power of genetic algorithms.

9 Appendix

For all of the following experiments, we evaluated the model using 5-Fold Stratified Cross Validation and
reported the mean loss, accuracy and Cohen’s Accuracy.

9.1 Activation Functions

To compare activation functions, we used mean imputation, an outlier constant of 2.5, and standardization.

Activation Function|Mean Loss‘Mean Accuracy‘Mean Cohen’s Kappa

Sigmoid 0.081 97.85% 0.75
ReLLU 0.066 98.22% 0.80
Leaky ReLLU 0.069 98.02% 0.79

In general, the ReLU and leaky ReLLU performed better than the logistic sigmoid.

9.2 Imputation

To compare imputation methods, we used max-min scaling for the data (which scales continuous variables be-
tween [0, 1]), an outlier constant of 2.5, and the ReLU activation function.

Imputation‘Mean Loss‘Mean Accuracy‘Mean Cohen’s Kappa

Mean 0.09 97.64% 0.73
Median 0.10 97.43% 0.71
Mode 0.09 97.50% 0.69

Mean imputation gave the highest accuracy and Cohen’s kappa, which is not unexpected as the distribution
of the continuous variables is relatively Gaussian as shown in Figure

9.3 Scaling/Normalisation

To compare scaling/normalisation methods, we used mean imputation for the data, an outlier constant of 2.5,
and the ReLU activation function.

Normalisation ‘Mean Loss|Mean Accuracy‘Mean Cohen’s Kappa

Max-Min 0.09 97.64% 0.72
Mean Normalisation 0.09 97.68% 0.73
Standardization 0.07 97.95% 0.77

Using standardization improved the predictive performance of our network quite significantly over the other
methods of scaling/normalisation.

References

1. The American Thyroid Association.: About Hypothyroidism: https://www.thyroid.org/media-main/about-
hypothyroidism/

2. Cooper, DS. and Ridgway, EC.: Thoughts on prevention of thyroid disease in the United States, Thyroid, vol. 12, pp.
925-929. (2002)

3. Alther, M. and Reddy, CK.: Clinical Decision Support Systems, Healthcare Data Analytics (2015)

4. Gedeon, TD. and Harris, D.: Network Reduction Techniques, Proceedings International Conference on Neural Net-
works Methodologies and Applications, AMSE, vol. 1, pp. 119-126, San Diego, (1991)

5. Gedeon, TD.: Indicators of Hidden Neuron Functionality: the Weight Matrix versus Neuron Behaviour, Proceedings
1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems,
pp. 26-29, (1995)

10

6. Wilson, DR. and Martinez, TR.: Improved Heterogeneous Distance Functions, Journal of Artificial Intelligence Re-
search, vol. 6, pp. 1-34, (1997)

7. Gelman, A. and Hill, J.: Data Analysis Using Regression and Multilevel /Hierarchical Models, Chapter 25, pp. 529-543,
(2007)

8. Liew, SS., Khalil-Hani M. and Bakhteri R.: Bounded activation functions for enhanced training stability of deep neural
networks on visual pattern recognition problems, Neurocomputing, vol. 216, pp. 718-734 (2016)

9. PyTorch Documentation: http://pytorch.org/docs/master/nn.html

10. Wikipedia contributors: Accuracy paradox, Wikipedia, The Free Encyclopedia,
https://en.wikipedia.org/w/index.php?title=Accuracy_paradox&oldid=814373733

11. Cohen, J.: A Coefficient of Agreement for Nominal Scales, Educational and Psychological Measurement, vol. 20, pp.
37-46 (1960)

12. Peck, CC., Dhawan ,AP., Meyer, CM.: Genetic Algorithm based Input Selection for a Neural Network Function
Approximator with Applications to SSME Health Monitoring, IEEE International Conference on Neural Networks,
vol. 2, pp. 1115-1122 (1993)

13. Engelbrecht, AP.: Computational Intelligence: An Introduction (2007)

14. De Jong, KA., Spears, WM.: An Analysis of the Interacting Roles of Population Size and Crossover in Genetic
Algorithms, Parallel problem solving from nature, pp. 38-47 (1991)

	Enhancing Artificial Neural Networks for Thyroid Disease Diagnosis

