

A Large Scale Study on Shared Weight Autoencoder

Zhengyang Liu

Research School of Computer Science

The Australian National University

u6022937@anu.edu.au

Abstract. With the development of the deep learning, the application of the unsupervised learning has become more

widespread, especially a feature extraction method called autoencoder. However, when training large datasets, besides

the training accuracy or the loss, the executing time become an important attribute to judge the model. Two

autoencoders with shared weight which can reduce executing time is designed can compared with other methods, one

is the traditional artificial neural network(ANN) for a small dataset and the other one is a convolutional neural

network(CNN) of a object recognition dataset called CIFAR10. What's more, a regression model is build for the

previous dataset to predict the final score of the students in Portuguese class while a classification model is trained to

recognize the object label in a image for the CIFAR10. By comparing the results for several experiments, it can be

found that the shared weight autoencoder can make the performances of complicate dataset slightly worse, but it can

save time and memory when training while the results on the small dataset is quite stable and well.

Keywords: Neural Network, Convolutional Neural Network, Regression, Classification, Shared Weight Autoencoder.

1. Introduction

With the improvement of technology, there are more and more problems that can be solved by computers instead of doing

a large amount of calculations manually. A specific problem is about score prediction in school which benefits both

students and educational resources managers. Educational level is a vital factor to judge the level of a country. In the past

decades, the government of Portugal try a lot to improve the educational level of students, however, the data show that

the student failure rate is quite high among the Europe countries as well as the dropping out rates. Because Portuguese

course consist of a large amount of fundamental parts which support other courses, it is meaningful to analyze the data

that related to the Portuguese grade. Another kind of problem is to recognize objects and label them, which is quite often

in our daily life. When there are only few objects or labels, it is easy to recognize them by only observation. Nevertheless,

when there tens of thousands of them, visual observation become impossible. How to recognize them using machine

become hot topics.

To solve all the complicated problems in a easy way, ANN is created to do both regression and classification task for

small dataset training. However, when it comes to large datasets like image datasets, lacking complicated design, NNs

performs terribly. Therefore, the deep learning technique is created to deal with the large dataset, including CNN, a feature

extraction network proposed by Lecun[2]. The different between CNN and ANN is the convolutional layers, which can

extract the features. In general, there are multiple convolution kernels which can do convolution operation on channels of

the images. The whole CNN network contains multiple convolution layers, pooling layers and some fully connected layers.

To prevent the overfitting situation and increase robustness of the designed model, a autoencoder which is a kind of

compression and dimension reduction algorithm is implemented. Two autoencoders are designed in this work, one is a

traditional ANN designed to extract the main attributes in the student performance dataset while the other one is a CNN

for feature learning and dimensionality reduction. Based on the encoder-decoder method paradigm[3], the input of the

autoencoder is first transformed into a typically lower-dimensional space(encoder), and then expended to reconstruct the

initial data(decoder). Moreover, when evaluate a model, executing time is also a factor that is of importance. Inspired by

the shared weight autoencoder proposed by Tom[1], shared weight method is added to both of the autoencoders to reduce

the executing time.

For the score prediction task, a customized regression model is trained given the first and second period grade,

developed with a shared weight autoencoder to compress the preprocessed attribute data and extract the valuable features.

In addition, since this is a global issue, several studies are addressed on this theme. In 2006, Pardos and his partners

predicted math grade using Bayesian Network and their model can achieve 85% accuracy rate[5]. For the object

recognition task, the classification model is chosen and developed with a shared weight CNN autoencoder. With the

hierarchical designed of stack autoencoders, the accuracy of CIFAR10 dataset can reach 78.2% in Masci’s search[4]

In the study of prediction, using transcripts and questionnaires, the data was collected from two secondary schools in

Portugal. After preprocessed, the dataset is fed in a shared weight autoencoder net to compress the features.Then a

regression model is trained to create a predictor for every input data. The results show that a shared weight autoencoder

has a positive influence to make stable prediction, however, the shared weight technique basically dod not work in the

small dataset. As for the classification work, the data was from CIFAR10 dataset and after the feature extraction in the

autoencoder, the data is fed into a classification NN to give the image labels. The results show illustrate that shared weight

autoencoder can performs slight worse , but it can save time when training

The remainder of this paper is organized as follows. Next section goes through the data source and description, followed

by some methodologies used in this work. Before demonstrating the results of the work, the computing environment is

introduced. Afterward, the final parts draw a conclusion and give the feature work on the whole process.

2 Data source and description

2.1 Input data of student performance dataset

There are two datasets for the student performance in UCI Machine Learning Repository, Mathematics and Portuguese

features and scores. Since the number of instances in the Mathematics one is too small (only 398), the Portuguese one is

chosen. The data is aggregated after collecting student-related information(e.g. sex, age, mother’s education) as well as

asking for the school to provide the number of absences and Portuguese course’ grade in first, second and final period. In

addition, the sore ranks from 0 to 20, where 0 is the lowest and 20 is the best.

2.2 Preprocessing of students performance dataset

The data provided by UCI is the complete one that discards some features that lack discriminative attributes. However,

when it is fed into the neural network, the categorical data must be transferred to numerical data. Therefore, one-hot

encoding is used to solve this problem, with 33 features changing to 59. Like ‘sex’ in original dataset, it can be changed

to ‘Male’ and ‘Female’ attribute with only 0 or 1 in the to represent the sex of a student. What’s more, because the range

of the input is quite wide, so a normalize method is applied to change the input to a number between 0 to 1 with the ratio

between the input maintaining unchanged.

2.3 Final students performance dataset

After one-hot encoding of the raw dataset, the final dataset has 59 numeric attributes related to students’ status and 649

instances. The features are that may have influence on the final score of the Portuguese class and are different between

students, like demographic situation (e.g. sex, family size), emotional information (e.g. alcohol drinking amount) and

student performances in school (e.g. absences, score in every period). The student-related attributes in final dataset is

described in appendix and the desired score to predict is the final score (G3).

2.4 CIFAR10 dataset and preprocessing

The Cifar10 dataset consists of 60000 natural color images of 32 × 32 in 10 classes. Each class contains 5000 instances

in the training set and 1000 in the testset. Although the images greatly vary inside each class, they are not necessarily

centered and may only has part of the object with varying background, which makes the whole dataset very hard to train

and do the classification task. Because the same reason mentioned above, the input is normalized to range[-1,1] without

change the ratio between any two of the input.

3 Methodology

3.1 ReLU and Sigmoid activation function

The activation functions are extremely important feature in defining a neural network, deciding whether a neuron will be

activated or not. If the information that a neuron received is relevant to the target, the neuron is activated follow the

formula:

 𝑌 = 𝐹(∑(𝑤 × 𝐼) + 𝑏) (1)

In above formula, F is the activation function, w is weight, I means input and b refer to bias. Among all the activation

functions, the ReLU and Sigmoid function is used in this work. Figure1 shows the shape and formula of both functions.

It can be found that Sigmoid function ranges from 0 to

1 while the ReLU function’s range is decided by the

input. Furthermore, sigmoid will not blow up

activations but gradient may get vanish during the

computation while the ReLU can solve such problem.

Therefore, when the range of the data is considered,

choosing the suitable activation is of great importance,

like the ReLU is applied in this task for both

autoencoder network and regression model,

nevertheless, the sigmoid function is selected to

constrain the output of the autoencoder net due to the

input range.

Figure1.Shape and formula of Sigmoid and ReLU

3.2 Adaptive Moment Estimation (Adam) optimizer

In this work, Adam optimizer is used for training both the autoencoder net and the regression net. Compared with

Stochastic Gradient Descent(SGD) optimizer which update the parameter for each training epochs to get the global

minima but it leads to a complicated convergence of the accurate minimum and it can keep overshooting, Adam do a

better job of converging faster and more exact. Adam stores not only an exponentially decaying average of past squared

gradients v(t), but also an exponentially decaying average of past gradients M(t).

�̂�𝑡 =
𝑚𝑡

1− 𝛽1
𝑡 (2)

 v̂t =
vt

1− β2
t (3)

Therefore, the final update of parameter is as follow:

𝜃𝑡+1 = 𝜃𝑡 −
𝑛

∈ + √v̂t
�̂�𝑡 (4)

In addition, by rectifying problems that occur in other optimizers like learning rate vanishment and fluctuation of the

loss function, the Adam performs well in real work.

3.3 Max-pooling

For hierarchical neural networks in general, especially CNN, translation-invariant representations are obtained by

introducing a max-polling layer[1], which down-samples the latent representation by taking the maximum value over

nonoverlapping sub-regions. This kind of method improves filter selectivity because the match between the feature and

the input field over the region of interest can determine the activation of the neurons in the latent representation.

The max-pooling layers are introduced in the autoencoder net for CIFAR10 to sparsity over the hidden representation

by deleting all the values that are smaller than the maximal value in the nonoverlapping area. By adding these layers, the

feature detector performs more broadly applicable. In addition, this sparse latent method decreases the average number

of filters contributing to the pixels’ decoding during the reconstruction stage, which makes filters to be more general.

3.4 Shared weight Autoencoder net

A shared weight autoencoder net is an NN used to learn a representation for a dataset to reducing the dimensionality and

the space of weight configurations in unsupervised learning. In these two works, two autoencoder net (compression net)

with a weight between the input layer and the hidden layer being equal to that between the hidden layer and the output

layer is designed to extract the main features that can represent the whole input set. By doing this, the features are

decreased to 25 from 59 before being fed to the regression model in the student performance dataset while the image size

decreases from 32×32×3 to 16×8×8. Two autoencoders are described in next two sections

3.4.1 Traditional ANN shared weight autoencoder for the student performance dataset

The net is a two-layer feed-forward net with one hidden layer,

whose all connections are from one layer to the next one with no other

kind of connections like multilayer, lateral or backward connections.

Unlike the hidden layer whose size is smaller than that of the input

layer, the output layer contains the same neurons as input layer. The

hidden layer is designed to compress the features while the output

layer can recover them. The net can be thought as two separate things:

an encoder and decoder. To achieve weight shared, the weight of

encoder and decoder must be equal, using the two formula below:

(5) Figure2. Shared weight ANN autoencoder construction

 (6)

Where the superscript corresponds with encoder and decoder, with x being the input and σrepresenting the activation

function. As what just described, W(e) is equal to W(b). Therefore, the decoder is the actual output of the model and the

original input is the desired output. Since the input and output data is numeric and it is easy to get the mean, the Mean

Square Error(MSE) selected to be the loss function and the formula is:

 (7)

As for optimizer, the Adam described above is used to achieve a fast and exact net. The net is trained using the features

of training set which randomly chooses 80% of the whole one with the input data being also the desired output. Moreover,

the test set is the remaining 20% of the whole dataset. As for measuring error, back-propagation which is accurate and

easy to implement is applied. When defining the activation function of the hidden layer, instead of the sigmoid function

that is very popular for its convenience to calculate things like gradient, Relu is applied to reduce the likelihood of gradient

vanishing. Because the input is between 0 to 1, it is better to constrain the output to be in the same range. Therefore, a

sigmoid function before getting the decoder is added. After training, the encoder that is 25 attributes with 649 instances

is formed to be fed into next stage.

3.4.2 CNN shared weight autoencoder for the CIFAR10 dataset

To implement the image compression and reconstruction, a hierarchical CNN shared weight autoencoder is trained. An

encoder to do the image feature extraction and a decoder to achieve image reconstruction. The whole autoencoder is

designed as shown in Figure3.

Figure3. Shared weight CNN autoencoder construction

An encoder takes the original image as input and has three convolution layers, three activation layers and two poling

layers while the decoder takes encoder as input, having three deconvolution layers, three activation layers as well as two

poling layers. To save the memory and reduce executing time when training, the weights of three deconvolution layers

are fixed and equal to the corresponding encoder’s convolution layers. ReLU activation function is used in activation

layers followed by the dropout to increase the robustness of the model because it makes all layers to delete redundant

representations before the dropout. When training, the MSE is used because it can be easily calculated and it can well

represent the difference between target and the predicted images. Furthermore, for training, back propagation and Adam

optimizer are chosen for the same reason discussed above.

3.4 Regression net for student performance dataset

The regression net is designed to be a feed-forward three processing layers network with the input being the encoder

which is gained from the traditional ANN shared weight autoencoder. Because the aim of the task is to forecast the final

grade of a student, so the output of the regression model consists only one neuron like Figure4.

The input is only 25 features so the hidden neurons is a little fewer

than input neuron being 10. Since the input dataset size is small,

the hidden layer is useless to contain more neuron or be multilayer

which will increase the space to record the hidden neuron

information and slow down the speed of processing. Relu is also

applied in this net because of the same reason as above. Since the

score of a course is numeric and different from 0 to 20, the loss

function is also the MSE. Adam is used again to develop the

regression model. As for test set, the rest of 20% dataset is select.

Figure4. Regression net construction

3.5 Classification net for CIFAR10 dataset

The Classification net is a two-layer feed-forward network whose input is the encoder of the CNN shared weight

autoencoder. Since it is a classification task and there are 10 classes in the dataset, the output neurons are 10 like Figure

5.

The input is the encoder which is the size of 16×8×8 for each instance

and the output is the classes. Since the features have already been

reduced from 32×32×3 to the input size which is not the grid-like input,

only a traditional NN is designed to do the classification task. Since

there are a lot of attributes and if they are fully connected, it needs a

large amount of memory and training time will be quite slow, with

potential overfitting problem. So some dropouts are added between the

input layer and the hidden layer as well as the hidden layer and the

output layer. ReLU is applied while the loss function is the

CrossEntropy Loss, which measures the performance of a classification

model whose output is a probability value between 0 and 1. The

separate losses for each class label per observation are calculated and

summed up as the formula:
Figure5. Classification net construction

 (8)

3.6 Evaluation methods

For the regression model, it is used to predict a score and is easy to get the desired score from the dataset and the actual

output (predicted one) from the regression model, an evaluation method called Root Mean Squared Error(RMSE) is

introduced. The result can be computed using the following equation

 (9)

Where the is the actual value of the i-th epochs. It is differentiable so it is not complicated to calculate.

 For the classification task, the obvious way to judge a classification model is to compare its predicted label with the

desired label and find the accuracy of the prediction. So an accuracy formula is used to test the model

(10)

4. Computational Environment

All the experiments in this study are conducted using PyTorch, an open source machine learning library for Python and

used for applications such as natural language processing. Python is a free and interpreted high-level programming

language with loads of powerful tools to analyze data. The PyTorch library presents lots of coherent functions for

regression tasks. Particularly, it contains main process functions for training a regression model such as loss functions,

optimizers and activation functions. Moreover, all experiments are done on an i5-7500 CPU, Nvidia GTX1050Ti, 8g

RAM and windows environment.

5. Results and Discussion

5.1 Result about using traditional NN shared weight autoencoder on the regression task

After completing the NN autoencoder the whole regression model performs slightly better than one that only contains a

regression model. However, when apply the shared weight method, the performance is nearly equal to the autoencoder

without shared weight.

The Table3 shows the data of both model.

Table3. Test evaluation of the whole model with and without the autoencoder

 Whole model test evaluation

Model without autoencoder 2.3 – 3.4

Model with autoencoder 2.50 ± 0.2

Model with shared weight autoencoder 2.60 ± 0.2

It can be seen that the autoencoder does work. After feeding the input(59 attributes) to compression net, a RMSE of

around 0.14 can be achieve to decrease the features to 25 in the test phase. And the evaluation function is the RMSE. It

can be concluded that after doing autoencoder, the RMSE of test set is keeping around 2.6 while the result using only

regression model without shared weight autoencoder fluctuates between 2.3 to 3.4. Thus, the regression model with an

autoencoder can forecast more accurate and stable. Furthermore, the MSE of 500 epochs in both model during the training

is shown in Figure4. Due to the little difference among every train time, the selected conditions occur the most times,

which illustrates that the regression network is strongly influenced by the input size at the beginning because when the

point with x-axis set to 0 the y value is of big difference (140 and 160).

Figure6. The MSE of 500 epochs for regression with(left) and without(right) shared weight autoencoder respectively

As for the share weight method, since it is only apply on the autoencoder, so the training time of the NN autoencoders

with and without shared weight is recorded respectively for further comparison. However, because the dataset is quite

small, the training time is very short, which has a distinct change during training. Both executing time of the autoencoders

are between 0.8-1.1 seconds generally, which are the same. Therefore, an shared weight autoencoder can do a stable

prediction job on the small dataset and the shared weight method do not play an important role in speeding up the training

process.

5.2 Result about using CNN shared weight autoencoder on the classification task

Unlike training using a small dataset, shared weight method performs well in the larger dataset, with largely decreasing

the training time, the accuracy of the whole model only has a minor drop. Figure7 shows the reconstructed images

(original input in the left and the reconstructed images on the right) in the beginning of the autoencoder training and the

end of the 100 epochs training, with the other information collected for share weight autoencoder in the table4.

 Figure7. Reconstructed images using autoencoder with (4 right images) and without(4 left ones) shared weight

Table4. Vital information using autoencoder with and without shared weight respectively

It can be seen from the figure and table that the shared weight method can make autoencoder loss bigger and make the

reconstructed images more blurry, however, the performance of the whole classification model do not decrease much

while it improve nearly 25% of performance of the training time. Moreover, the big loss of the autoencoder affect the

accuracy slightly. Therefore, the shared weight method is more suitable to apply on the model when training the large

dataset.

5.3 Result about comparing CNN shared weight autoencoder and the Stacked Convolutional Auto-

Encoders(CAES)(related paper)

Accuracy can reach 64.97% using CNN shared weight autoencoder while the error rate is only 21.8% when applying

CAES[4]. CAES is a deep hierarchy formed by stacking several normal autoencoders and each layers’ input is from the

latent representation of the layer below, which is a greedy, layer-wise fashion way to pre-train the unsupervised model.

In addition, the author use CNN which is initialized by the hierarchical trained CAES weights to do the classification task

while a traditional ANN is designed to classify the objects in my work, therefore the accuracy of their work is much hair

than mine. To improve my work, instead of the traditional ANN, more complicated structure can be used to do

classification like CNN because after the autoencoder net, the image size is a little big for a ANN to train.

 Testset loss on the

autoencoder

Executing time on

the autoencoder (s)

Accuracy on the

whole task

Autoencoder without shared weight 0.00022 2145 66.32%

Autoencoder with shared weight 0.00042 1598 64.97%

6 Conclusion and Feature work

To make prediction on the final score of the Portuguese class, a regression model based on neural network is developed

with an shared weight autoencoder to extract the valuable features before regression. The model performs well compared

with the one that has no autoencoder, nevertheless, because the dataset consists a small number of attributes and the

executing time is quite short, the shared weight method do not work. However, when apply a shared weight CNN

autoencoder on a large image dataset, it does perform well with significant improvement of the executing time and minor

decrease of the accuracy when classify objects

The conclusion can be drawn from the experiments :

a. Because the input size affect a lot on the NN regression model, a autoencoder is developed to extract valuable features

and reduce the dimensionality of the input dataset

b. Making the autoencoder weight between the input and hidden neurons equal to that between hidden and output

neurons(in CNN is the weight between deconvolution layers and corresponding convolution layers) can lead to

improvement in speed when a big dataset needs to be trained and no much decrease of the final result.

c. To simplify the convergence during the training stage, Adam is applied.

Many of the experiments can be done further. First of all, there are many others datasets that can be applied to a

regression or classification task. The models in this work should be tested on other datasets to ensure that these two shared

weight autoencoder can extract the features of those data as well. Secondly, the classification net can be changed to a

more complicated structure like CNN to classify more precise. Finally, some hierarchical structures can be added to the

autoencoder to reconstruct a more similar image.

References

[1] Gedeon T. D., Catalan J. A., J. Jin, "Image Compression using Shared Weights and Bidirectional Networks", Proc.

2nd International ICSC Symposium on Soft Computing (SOCO'97), pp. 374-381, 1997.

[2] LeCun, Y., & Bengio, Y. (1995). Convolutional networks for images, speech, and time series. The handbook brain

theory and neural networks, 3361(10), 1995.

[3] Ranzato, M., Fu Jie Huang, Y.L.B., LeCun, Y.: Unsupervised learning of invariant feature hierarchies with

applications to object recognition. In: Proc. of Computer Vision and Pattern Recognition Conference (2007)

[4] Masci J., Meier U., Cireşan D., Schmidhuber J. (2011) Stacked Convolutional Auto-Encoders for

Hierarchical Feature Extraction. In: Honkela T., Duch W., Girolami M., Kaski S. (eds) Artificial Neural

Networks and Machine Learning – ICANN 2011. ICANN 2011. Lecture Notes in Computer Science, vol 6791.

Springer, Berlin, Heidelberg

[5] Cortez P. and Silva A. Using Data Mining to Predict Secondary School Student Performance. In A. Brito and J.

Teixeira Eds., Proceedings of 5th FUture BUsiness TEChnology Conference (FUBUTEC 2008) pp. 5-12, Porto,

Portugal, April, 2008, EUROSIS, ISBN 978-9077381-39-7.

Appendix

Table4. the student-related attributes after preprocessing

Attribute Description (domain)

GP

MS

Male

Female

Urban

Rural

famsize_GT3

famsize_LE3

Pstatus_A

Pstatus_T

M_at_home

Mh_ealth

M_other

M_services

M_teacher

F_at_home

F_health

F_other

F_services

F_teacher

reason_course

student is from Gabriel Pereira school (numeric: 1 yes, 0 no)

student is from Mousinho da Silveira school (numeric: 1 yes, 0 no)

student is a male (numeric: 1 yes, 0 no)

student is a female (numeric: 1 yes, 0 no)

student’s home is in urban area (numeric: 1 yes, 0 no)

student’s home is in urban area (numeric: 1 yes, 0 no)

family size is greater than 3 (numeric: 1 yes, 0 no)

family size is greater than 3 (numeric: 1 yes, 0 no)

parents are living apart (numeric: 1 yes, 0 no)

parents are living together (numeric: 1 yes, 0 no)

mother has no job and is at home (numeric: 1 yes, 0 no)

mother is engaged in care-related work (numeric: 1 yes, 0 no)

mother is engaged in other work (numeric: 1 yes, 0 no)

mother is engaged in services-related work (numeric: 1 yes, 0 no)

mother is engaged in educational-related work (numeric: 1 yes, 0 no)

father has no job and is at home (numeric: 1 yes, 0 no)

father is engaged in care-related work (numeric: 1 yes, 0 no)

father is engaged in other work (numeric: 1 yes, 0 no)

father is engaged in services-related work (numeric: 1 yes, 0 no)

father is engaged in educational-related work (numeric: 1 yes, 0 no)

course is the reason why student choose the school (numeric: 1 yes, 0 no)

reason_home

reason_reputation

guardian_father

guardian_mother

guardian_other

schoolsup_no

schoolsup_yes

famsup_no

famsup_yes

paid_no

paid_yes

activities_no

activities_yes

nursery_no

nursery_yes

higher_no

higher_yes

internet_no

internet_yes

romantic_no

romantic_yes

age

Medu

Fedu

Traveltime

Studytime

Failures

Famrel

Freetime

goout

Dalc

Walc

health

closing to home is the reason why student choose the school (numeric: 1 yes, 0 no)

school reputation is the reason why student choose the school (numeric: 1 yes, 0 no)

father is the guardian of the student (numeric: 1 yes, 0 no)

mother is the guardian of the student (numeric: 1 yes, 0 no)

neither mother nor father is the guardian of the student (numeric: 1 yes, 0 no)

student does not have extra educational school support (numeric: 1 yes, 0 no)

student has extra educational school support (numeric: 1 yes, 0 no)

student does not have family educational support (numeric: 1 yes, 0 no)

student has family educational support (numeric: 1 yes, 0 no)

student does not attend extra paid classes (numeric: 1 yes, 0 no)

student attends extra paid classes (numeric: 1 yes, 0 no)

student does not participate in extra-curricular activities (numeric: 1 yes, 0 no)

student participates in extra-curricular activities (numeric: 1 yes, 0 no)

student have not attended nursery school (numeric: 1 yes, 0 no)

student has attended nursery school (numeric: 1 yes, 0 no)

student does not want to take higher education (numeric: 1 yes, 0 no)

student wants to take higher education (numeric: 1 yes, 0 no)

student has no internet access at home (numeric: 1 yes, 0 no)

student has internet access at home (numeric: 1 yes, 0 no)

student is not in a romantic relationship (numeric: 1 yes, 0 no)

student is in a romantic relationship (numeric: 1 yes, 0 no)

student’s age (numeric: from 15 to 22)

mother’s education level (numeric: from 0 (primary) to 4 (high))

father’s education level (numeric: from 0 (primary) to 4 (high))

travel time from home to school (numeric: 1. < 15 min., 2. 15 to 30 min., 3. 30 min. to 1

hour or 4.> 1 hour).

weekly study time (numeric: 1. < 2 hours, 2. 2 to 5 hours, 3. 5 to 10 hours or 4. >10 hours)

failures number of previous courses (numeric: n if 1 ≤ n < 3, else 4)

family relationships’ quality (numeric: from 1 (bad) to 5 (very good))

free time level after school (numeric: from 1 (low) to 5 (high))

frequency of hanging out with friends (numeric: from 1(quite low) to 5 (very high))

alcohol drinking amount in weekdays (numeric: from 1(quite low) to 5 (very high))

alcohol drinking amount in weekend (numeric: from 1(quite low) to 5 (very high))

health condition (numeric: from 1(quite low) to 5 (very high))

absences

G1

G2

G3

student’s absence in school (numeric: from 0 to 93)

score in first period (numeric: from 0 to 20)

score in second period (numeric: from 0 to 20)

final score (numeric: from 0 to 20)

