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Abstract. With the development of the deep learning, the application of the unsupervised learning has become more 

widespread, especially a feature extraction method called autoencoder. However, when training large datasets, besides 

the training accuracy or the loss, the executing time become an important attribute to judge the model. Two 

autoencoders with shared weight which can reduce executing time is designed can compared with other methods, one 

is the traditional artificial neural network(ANN) for a small dataset and the other one is a convolutional neural 

network(CNN) of a object recognition dataset called CIFAR10. What's more, a regression model is build for the 

previous dataset to predict the final score of the students in Portuguese class while a classification model is trained to 

recognize the object label in a image for the CIFAR10. By comparing the results for several experiments, it can be 

found that the shared weight autoencoder can make the performances of complicate dataset slightly worse, but it can 

save time and memory when training while the results on the small dataset is quite stable and well.  
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1. Introduction 

With the improvement of technology, there are more and more problems that can be solved by computers instead of doing 

a large amount of calculations manually. A specific problem is about score prediction in school which benefits both 

students and educational resources managers. Educational level is a vital factor to judge the level of a country. In the past 

decades, the government of Portugal try a lot to improve the educational level of students, however, the data show that 

the student failure rate is quite high among the Europe countries as well as the dropping out rates. Because Portuguese 

course consist of a large amount of fundamental parts which support other courses, it is meaningful to analyze the data 

that related to the Portuguese grade. Another kind of problem is to recognize objects and label them, which is quite often 

in our daily life. When there are only few objects or labels, it is easy to recognize them by only observation. Nevertheless, 

when there tens of thousands of them, visual observation become impossible. How to recognize them using machine 

become hot topics.  

To solve all the complicated problems in a easy way, ANN is created to do both regression and classification task for 

small dataset training. However, when it comes to large datasets like image datasets, lacking complicated design, NNs 

performs terribly. Therefore, the deep learning technique is created to deal with the large dataset, including CNN, a feature 

extraction network proposed by Lecun[2]. The different between CNN and ANN is the convolutional layers, which can 

extract the features. In general, there are multiple convolution kernels which can do convolution operation on channels of 

the images. The whole CNN network contains multiple convolution layers, pooling layers and some fully connected layers. 

To prevent the overfitting situation and increase robustness of the designed model, a autoencoder which is a kind of 

compression and dimension reduction algorithm is implemented. Two autoencoders are designed in this work, one is a 

traditional ANN designed to extract the main attributes in the student performance dataset while the other one is a CNN 

for feature learning and dimensionality reduction. Based on the encoder-decoder method paradigm[3], the input of the 

autoencoder is first transformed into a typically lower-dimensional space(encoder), and then expended to reconstruct the 

initial data(decoder). Moreover, when evaluate a model, executing time is also a factor that is of importance. Inspired by 

the shared weight autoencoder proposed by Tom[1], shared weight method is added to both of the autoencoders to reduce 

the executing time.  

For the score prediction task, a customized regression model is trained given the first and second period grade, 

developed with a shared weight autoencoder to compress the preprocessed attribute data and extract the valuable features. 

In addition, since this is a global issue, several studies are addressed on this theme. In 2006, Pardos and his partners 

predicted math grade using Bayesian Network and their model can achieve 85% accuracy rate[5]. For the object 

recognition task, the classification model is chosen and developed with a shared weight CNN autoencoder. With the 

hierarchical designed of stack autoencoders, the accuracy of CIFAR10 dataset can reach 78.2% in Masci’s search[4] 

In the study of prediction, using transcripts and questionnaires, the data was collected from two secondary schools in 

Portugal. After preprocessed, the dataset is fed in a shared weight autoencoder net to compress the features.Then a 

regression model is trained to create a predictor for every input data. The results show that a shared weight autoencoder 

has a positive influence to make stable prediction, however, the shared weight technique basically dod not work in the 

small dataset. As for the classification work, the data was from CIFAR10 dataset and after the feature extraction in the 

autoencoder, the data is fed into a classification NN to give the image labels. The results show illustrate that shared weight 

autoencoder can performs slight worse , but it can save time when training 

The remainder of this paper is organized as follows. Next section goes through the data source and description, followed 

by some methodologies used in this work. Before demonstrating the results of the work, the computing environment is 

introduced. Afterward, the final parts draw a conclusion and give the feature work on the whole process. 



2 Data source and description 

2.1 Input data of student performance dataset 

There are two datasets for the student performance in UCI Machine Learning Repository, Mathematics and Portuguese 

features and scores. Since the number of instances in the Mathematics one is too small (only 398), the Portuguese one is 

chosen. The data is aggregated after collecting student-related information(e.g. sex, age, mother’s education) as well as 

asking for the school to provide the number of absences and Portuguese course’ grade in first, second and final period. In 

addition, the sore ranks from 0 to 20, where 0 is the lowest and 20 is the best.  

2.2 Preprocessing of students performance dataset 

The data provided by UCI is the complete one that discards some features that lack discriminative attributes. However, 

when it is fed into the neural network, the categorical data must be transferred to numerical data. Therefore, one-hot 

encoding is used to solve this problem, with 33 features changing to 59. Like ‘sex’ in original dataset, it can be changed 

to ‘Male’ and ‘Female’ attribute with only 0 or 1 in the to represent the sex of a student. What’s more, because the range 

of the input is quite wide, so a normalize method is applied to change the input to a number between 0 to 1 with the ratio 

between the input maintaining unchanged. 

2.3 Final students performance dataset 

After one-hot encoding of the raw dataset, the final dataset has 59 numeric attributes related to students’ status and 649 

instances. The features are that may have influence on the final score of the Portuguese class and are different between 

students, like demographic situation (e.g. sex, family size), emotional information (e.g. alcohol drinking amount) and 

student performances in school (e.g. absences, score in every period). The student-related attributes in final dataset is 

described in appendix and the desired score to predict is the final score (G3). 

2.4 CIFAR10 dataset and preprocessing 

The Cifar10 dataset consists of 60000 natural color images of 32 × 32 in 10 classes. Each class contains 5000 instances 

in the training set and 1000 in the testset. Although the images greatly vary inside each class, they are not necessarily 

centered and may only has part of the object with varying background, which makes the whole dataset very hard to train 

and do the classification task. Because the same reason mentioned above, the input is normalized to range[-1,1] without 

change the ratio between any two of the input. 

3 Methodology 

3.1 ReLU and Sigmoid activation function 

The activation functions are extremely important feature in defining a neural network, deciding whether a neuron will be 

activated or not. If the information that a neuron received is relevant to the target, the neuron is activated follow the 

formula:  

               𝑌 = 𝐹(∑(𝑤 × 𝐼) + 𝑏)                                    (1) 

In above formula, F is the activation function, w is weight, I means input and b refer to bias. Among all the activation 

functions, the ReLU and Sigmoid function is used in this work. Figure1 shows the shape and formula of both functions. 

It can be found that Sigmoid function ranges from 0 to 

1 while the ReLU function’s range is decided by the 

input. Furthermore, sigmoid will not blow up 

activations but gradient may get vanish during the 

computation while the ReLU can solve such problem. 

Therefore, when the range of the data is considered, 

choosing the suitable activation is of great importance, 

like the ReLU is applied in this task for both 

autoencoder network and regression model, 

nevertheless, the sigmoid function is selected to 

constrain the output of the autoencoder net due to the 

input range. 

Figure1.Shape and formula of Sigmoid and ReLU          



3.2 Adaptive Moment Estimation (Adam) optimizer 

In this work, Adam optimizer is used for training both the autoencoder net and the regression net. Compared with 

Stochastic Gradient Descent(SGD) optimizer which update the parameter for each training epochs to get the global 

minima but it leads to a complicated convergence of the accurate minimum and it can keep overshooting, Adam do a 

better job of converging faster and more exact. Adam stores not only an exponentially decaying average of past squared 

gradients v(t), but also an exponentially decaying average of past gradients M(t). 
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Therefore, the final update of parameter is as follow: 
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In addition, by rectifying problems that occur in other optimizers like learning rate vanishment and fluctuation of the 

loss function, the Adam performs well in real work. 

3.3 Max-pooling 

For hierarchical neural networks in general, especially CNN, translation-invariant representations are obtained by 

introducing a max-polling layer[1], which down-samples the latent representation by taking the maximum value over 

nonoverlapping sub-regions. This kind of method improves filter selectivity because the match between the feature and 

the input field over the region of interest can determine the activation of the neurons in the latent representation. 

The max-pooling layers are introduced in the autoencoder net for CIFAR10 to sparsity over the hidden representation 

by deleting all the values that are smaller than the maximal value in the nonoverlapping area. By adding these layers, the 

feature detector performs more broadly applicable. In addition, this sparse latent method decreases the average number 

of filters contributing to the pixels’ decoding during the reconstruction stage, which makes filters to be more general.  

3.4 Shared weight Autoencoder net   

A shared weight autoencoder net is an NN used to learn a representation for a dataset to reducing the dimensionality and 

the space of weight configurations in unsupervised learning. In these two works, two autoencoder net (compression net) 

with a weight between the input layer and the hidden layer being equal to that between the hidden layer and the output 

layer is designed to extract the main features that can represent the whole input set. By doing this, the features are 

decreased to 25 from 59 before being fed to the regression model in the student performance dataset while the image size 

decreases from 32×32×3 to 16×8×8. Two autoencoders are described in next two sections 

3.4.1 Traditional ANN shared weight autoencoder for the student performance dataset 

 

The net is a two-layer feed-forward net with one hidden layer, 

whose all connections are from one layer to the next one with no other 

kind of connections like multilayer, lateral or backward connections. 

Unlike the hidden layer whose size is smaller than that of the input 

layer, the output layer contains the same neurons as input layer. The 

hidden layer is designed to compress the features while the output 

layer can recover them. The net can be thought as two separate things: 

an encoder and decoder. To achieve weight shared, the weight of 

encoder and decoder must be equal, using the two formula below: 
 

 
 

(5) Figure2. Shared weight ANN autoencoder construction                                                          

                                                                                                    (6) 

 

Where the superscript corresponds with encoder and decoder, with x being the input and σrepresenting the activation 

function. As what just described, W(e) is equal to W(b). Therefore, the decoder is the actual output of the model and the 

original input is the desired output. Since the input and output data is numeric and it is easy to get the mean, the Mean 

Square Error(MSE) selected to be the loss function and the formula is: 

                       

  (7) 



As for optimizer, the Adam described above is used to achieve a fast and exact net. The net is trained using the features 

of training set which randomly chooses 80% of the whole one with the input data being also the desired output. Moreover, 

the test set is the remaining 20% of the whole dataset. As for measuring error, back-propagation which is accurate and 

easy to implement is applied. When defining the activation function of the hidden layer, instead of the sigmoid function 

that is very popular for its convenience to calculate things like gradient, Relu is applied to reduce the likelihood of gradient 

vanishing. Because the input is between 0 to 1, it is better to constrain the output to be in the same range. Therefore, a 

sigmoid function before getting the decoder is added. After training, the encoder that is 25 attributes with 649 instances 

is formed to be fed into next stage.  

3.4.2 CNN shared weight autoencoder for the CIFAR10 dataset 

To implement the image compression and reconstruction, a hierarchical CNN shared weight autoencoder is trained. An 

encoder to do the image feature extraction and a decoder to achieve image reconstruction. The whole autoencoder is 

designed as shown in Figure3. 

 
Figure3. Shared weight CNN autoencoder construction 

 

An encoder takes the original image as input and has three convolution layers, three activation layers and two poling 

layers while the decoder takes encoder as input, having three deconvolution layers, three activation layers as well as two 

poling layers. To save the memory and reduce executing time when training, the weights of three deconvolution layers 

are fixed and equal to the corresponding encoder’s convolution layers. ReLU activation function is used in activation 

layers followed by the dropout to increase the robustness of the model because it makes all layers to delete redundant 

representations before the dropout. When training, the MSE is used because it can be easily calculated and it can well 

represent the difference between target and the predicted images. Furthermore, for training, back propagation and Adam 

optimizer are chosen for the same reason discussed above. 

3.4  Regression net for student performance dataset 

The regression net is designed to be a feed-forward three processing layers network with the input being the encoder 

which is gained from the traditional ANN shared weight autoencoder. Because the aim of the task is to forecast the final 

grade of a student, so the output of the regression model consists only one neuron like Figure4. 

 

 

 

The input is only 25 features so the hidden neurons is a little fewer      

than input neuron being 10. Since the input dataset size is small,   

the hidden layer is useless to contain more neuron or be multilayer  

which will increase the space to record the hidden neuron  

information and slow down the speed of processing. Relu is also  

applied in this net because of the same reason as above. Since the  

score of a course is numeric and different from 0 to 20, the loss  

function is also the MSE. Adam is used again to develop the  

regression model. As for test set, the rest of 20% dataset is select. 

 

 
Figure4. Regression net construction 

3.5 Classification net for CIFAR10 dataset 

The Classification net is a two-layer feed-forward network whose input is the encoder of the CNN shared weight 

autoencoder. Since it is a classification task and there are 10 classes in the dataset, the output neurons are 10 like Figure 

5. 



  

 

The input is the encoder which is the size of 16×8×8 for each instance 

and the output is the classes. Since the features have already been  

reduced from 32×32×3 to the input size which is not the grid-like input,  

only a traditional NN is designed to do the classification task. Since  

there are a lot of attributes and if they are fully connected, it needs a  

large amount of memory and training time will be quite slow, with  

potential overfitting problem. So some dropouts are added between the   

input layer and the hidden layer as well as the hidden layer and the  

output layer. ReLU is applied while the loss function is the  

CrossEntropy Loss, which measures the performance of a classification  

model whose output is a probability value between 0 and 1. The  

separate losses for each class label per observation are calculated and  

summed up as the formula:  
Figure5. Classification net construction 

                  (8) 

3.6 Evaluation methods 

For the regression model, it is used to predict a score and is easy to get the desired score from the dataset and the actual 

output (predicted one) from the regression model, an evaluation method called Root Mean Squared Error(RMSE) is 

introduced. The result can be computed using the following equation 

 

                                                                          (9)   

 

Where the is the actual value of the i-th epochs. It is differentiable so it is not complicated to calculate. 

  For the classification task, the obvious way to judge a classification model is to compare its predicted label with the 

desired label and find the accuracy of the prediction. So an accuracy formula is used to test the model 

 

(10) 

4. Computational Environment 

All the experiments in this study are conducted using PyTorch, an open source machine learning library for Python and 

used for applications such as natural language processing. Python is a free and interpreted high-level programming 

language with loads of powerful tools to analyze data. The PyTorch library presents lots of coherent functions for 

regression tasks. Particularly, it contains main process functions for training a regression model such as loss functions, 

optimizers and activation functions. Moreover, all experiments are done on an i5-7500 CPU, Nvidia GTX1050Ti, 8g 

RAM and windows environment. 

5. Results and Discussion 

5.1 Result about using traditional NN shared weight autoencoder on the regression task 

After completing the NN autoencoder the whole regression model performs slightly better than one that only contains a 

regression model. However, when apply the shared weight method, the performance is nearly equal to the autoencoder 

without shared weight.  

The Table3 shows the data of both model.  

 

Table3. Test evaluation of the whole model with and without the autoencoder 

 Whole model test evaluation 

Model without autoencoder 2.3 – 3.4 

Model with autoencoder  2.50 ± 0.2 

Model with shared weight autoencoder 2.60 ± 0.2  

 

 

It can be seen that the autoencoder does work. After feeding the input(59 attributes) to compression net, a RMSE of 

around 0.14 can be achieve to decrease the features to 25 in the test phase. And the evaluation function is the RMSE. It 

can be concluded that after doing autoencoder, the RMSE of test set is keeping around 2.6 while the result using only 

regression model without shared weight autoencoder fluctuates between 2.3 to 3.4. Thus, the regression model with an 



autoencoder can forecast more accurate and stable. Furthermore, the MSE of 500 epochs in both model during the training 

is shown in Figure4. Due to the little difference among every train time, the selected conditions occur the most times, 

which illustrates that the regression network is strongly influenced by the input size at the beginning because when the 

point with x-axis set to 0 the y value is of big difference (140 and 160). 

 
Figure6. The MSE of 500 epochs for regression with(left) and without(right) shared weight autoencoder respectively 

As for the share weight method, since it is only apply on the autoencoder, so the training time of the NN autoencoders 

with and without shared weight is recorded respectively for further comparison. However, because the dataset is quite 

small, the training time is very short, which has a distinct change during training. Both executing time of the autoencoders 

are between 0.8-1.1 seconds generally, which are the same. Therefore, an shared weight autoencoder can do a stable 

prediction job on the small dataset and the shared weight method do not play an important role in speeding up the training 

process. 

5.2 Result about using CNN shared weight autoencoder on the classification task 

Unlike training using a small dataset, shared weight method performs well in the larger dataset, with largely decreasing 

the training time, the accuracy of the whole model only has a minor drop. Figure7 shows the reconstructed images 

(original input in the left and the reconstructed images on the right) in the beginning of the autoencoder training and the 

end of the 100 epochs training, with the other information collected for share weight autoencoder in the table4. 

    
      Figure7. Reconstructed images using autoencoder with (4 right images) and without(4 left ones) shared weight 

 

Table4. Vital information using autoencoder with and without shared weight respectively 

 

It can be seen from the figure and table that the shared weight method can make autoencoder loss bigger and make the 

reconstructed images more blurry, however, the performance of the whole classification model do not decrease much 

while it improve nearly 25% of performance of the training time. Moreover, the big loss of the autoencoder affect the 

accuracy slightly. Therefore, the shared weight method is more suitable to apply on the model when training the large 

dataset. 

5.3 Result about comparing CNN shared weight autoencoder and the Stacked Convolutional Auto-

Encoders(CAES)(related paper) 

Accuracy can reach 64.97% using CNN shared weight autoencoder while the error rate is only 21.8% when applying 

CAES[4]. CAES is a deep hierarchy formed by stacking several normal autoencoders and each layers’ input is from the 

latent representation of the layer below, which is a greedy, layer-wise fashion way to pre-train the unsupervised model. 

In addition, the author use CNN which is initialized by the hierarchical trained CAES weights to do the classification task 

while a traditional ANN is designed to classify the objects in my work, therefore the accuracy of their work is much hair 

than mine. To improve my work, instead of the traditional ANN, more complicated structure can be used to do 

classification like CNN because after the autoencoder net, the image size is a little big for a ANN to train.  

 Testset loss on the 

autoencoder 

Executing time on 

the autoencoder (s) 

Accuracy on the 

whole task 

Autoencoder without shared weight 0.00022 2145 66.32% 

Autoencoder with shared weight 0.00042 1598 64.97% 



6  Conclusion and Feature work 

To make prediction on the final score of the Portuguese class, a regression model based on neural network is developed 

with an shared weight autoencoder to extract the valuable features before regression. The model performs well compared 

with the one that has no autoencoder, nevertheless, because the dataset consists a small number of attributes and the 

executing time is quite short, the shared weight method do not work. However, when apply a shared weight CNN 

autoencoder on a large image dataset, it does perform well with significant improvement of the executing time and minor 

decrease of the accuracy when classify objects 

The conclusion can be drawn from the experiments : 

a. Because the input size affect a lot on the NN regression model, a autoencoder is developed to extract valuable features 

and reduce the dimensionality of the input dataset 

b. Making the autoencoder weight between the input and hidden neurons equal to that between hidden and output 

neurons(in CNN is the weight between deconvolution layers and corresponding convolution layers) can lead to 

improvement in speed when a big dataset needs to be trained and no much decrease of the final result. 

c. To simplify the convergence during the training stage, Adam is applied. 

 

Many of the experiments can be done further. First of all, there are many others datasets that can be applied to a 

regression or classification task. The models in this work should be tested on other datasets to ensure that these two shared 

weight autoencoder can extract the features of those data as well. Secondly, the classification net can be changed to a 

more complicated structure like CNN to classify more precise. Finally, some hierarchical structures can be added to the 

autoencoder to reconstruct a more similar image. 
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Appendix 

Table4. the student-related attributes after preprocessing 

Attribute            Description (domain) 

GP                 

MS                

Male              

Female             

Urban             

Rural       

famsize_GT3         

famsize_LE3         

Pstatus_A           

Pstatus_T 

M_at_home 

Mh_ealth 

M_other 

M_services 

M_teacher 

F_at_home 

F_health 

F_other 

F_services 

F_teacher 

reason_course 

student is from Gabriel Pereira school (numeric: 1 yes, 0 no) 

student is from Mousinho da Silveira school (numeric: 1 yes, 0 no) 

student is a male (numeric: 1 yes, 0 no) 

student is a female (numeric: 1 yes, 0 no) 

student’s home is in urban area (numeric: 1 yes, 0 no) 

student’s home is in urban area (numeric: 1 yes, 0 no)  

family size is greater than 3 (numeric: 1 yes, 0 no) 

family size is greater than 3 (numeric: 1 yes, 0 no) 

parents are living apart (numeric: 1 yes, 0 no) 

parents are living together (numeric: 1 yes, 0 no) 

mother has no job and is at home (numeric: 1 yes, 0 no) 

mother is engaged in care-related work (numeric: 1 yes, 0 no) 

mother is engaged in other work (numeric: 1 yes, 0 no) 

mother is engaged in services-related work (numeric: 1 yes, 0 no) 

mother is engaged in educational-related work (numeric: 1 yes, 0 no) 

father has no job and is at home (numeric: 1 yes, 0 no) 

father is engaged in care-related work (numeric: 1 yes, 0 no) 

father is engaged in other work (numeric: 1 yes, 0 no) 

father is engaged in services-related work (numeric: 1 yes, 0 no) 

father is engaged in educational-related work (numeric: 1 yes, 0 no) 

course is the reason why student choose the school (numeric: 1 yes, 0 no) 



reason_home 

reason_reputation 

guardian_father 

guardian_mother 

guardian_other 

schoolsup_no 

schoolsup_yes 

famsup_no 

famsup_yes 

paid_no 

paid_yes 

activities_no 

activities_yes 

nursery_no 

nursery_yes 

higher_no 

higher_yes 

internet_no 

internet_yes 

romantic_no 

romantic_yes 

age 

Medu 

Fedu 

Traveltime 

 

Studytime 

 

Failures 

Famrel 

Freetime 

goout 

Dalc 

Walc 

health 

closing to home is the reason why student choose the school (numeric: 1 yes, 0 no) 

school reputation is the reason why student choose the school (numeric: 1 yes, 0 no) 

father is the guardian of the student (numeric: 1 yes, 0 no) 

mother is the guardian of the student (numeric: 1 yes, 0 no) 

neither mother nor father is the guardian of the student (numeric: 1 yes, 0 no) 

student does not have extra educational school support (numeric: 1 yes, 0 no) 

student has extra educational school support (numeric: 1 yes, 0 no) 

student does not have family educational support (numeric: 1 yes, 0 no) 

student has family educational support (numeric: 1 yes, 0 no) 

student does not attend extra paid classes (numeric: 1 yes, 0 no) 

student attends extra paid classes (numeric: 1 yes, 0 no) 

student does not participate in extra-curricular activities (numeric: 1 yes, 0 no) 

student participates in extra-curricular activities (numeric: 1 yes, 0 no) 

student have not attended nursery school (numeric: 1 yes, 0 no) 

student has attended nursery school (numeric: 1 yes, 0 no) 

student does not want to take higher education (numeric: 1 yes, 0 no) 

student wants to take higher education (numeric: 1 yes, 0 no) 

student has no internet access at home (numeric: 1 yes, 0 no) 

student has internet access at home (numeric: 1 yes, 0 no) 

student is not in a romantic relationship (numeric: 1 yes, 0 no) 

student is in a romantic relationship (numeric: 1 yes, 0 no) 

student’s age (numeric: from 15 to 22) 

mother’s education level (numeric: from 0 (primary) to 4 (high)) 

father’s education level (numeric: from 0 (primary) to 4 (high)) 

travel time from home to school (numeric: 1. < 15 min., 2. 15 to 30 min., 3. 30 min. to 1 

hour or 4.> 1 hour). 

weekly study time (numeric: 1. < 2 hours, 2. 2 to 5 hours, 3. 5 to 10 hours or 4. >10 hours) 

failures number of previous courses (numeric: n if 1 ≤ n < 3, else 4) 

family relationships’ quality (numeric: from 1 (bad) to 5 (very good)) 

free time level after school (numeric: from 1 (low) to 5 (high)) 

frequency of hanging out with friends (numeric: from 1(quite low) to 5 (very high)) 

alcohol drinking amount in weekdays (numeric: from 1(quite low) to 5 (very high)) 

alcohol drinking amount in weekend (numeric: from 1(quite low) to 5 (very high)) 

health condition (numeric: from 1(quite low) to 5 (very high)) 

absences 

G1 

G2 

G3 

student’s absence in school (numeric: from 0 to 93) 

score in first period (numeric: from 0 to 20) 

score in second period (numeric: from 0 to 20) 

final score (numeric: from 0 to 20) 

 
 

 

 


