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Abstract. We used neural network to solve income classification based in the UCI Census Income dataset. The 

RPROP optimization algorithm, the data normalization strategy and genetic algorithm feature selection increased the 

overall network prediction accuracy to approximately 85%.  
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1   Introduction 

This paper is about the process of neural network modelling and optimizing. The neural network is based in the tailored 

data from Census Income Data Set (http:// http://archive.ics.uci.edu/ml/datasets/Census+Income). The network design 

gets inspiration from the encoding and scaling methodologies by Bastos and Gedeon (1995), uses a Stochastic Gradient 

Descent (SGD) optimizer, and adapts Cross Entropy function as Loss function for the original network. Then the 

RPROP optimization algorithm, the data normalization strategy and genetic algorithm feature selection will contribute 

to the enhanced prediction accuracy. The report makes comparison between the outputs of neural network method and 

its counterpart, C2.5 and Naïve-Bayes algorithm and analyses, and its improved accuracy (~85%) is between C2.5 and 

Naïve-Bayes algorithm.  

2   Data Pre-processing 

The original data includes 14 attributes and 48842 instances in total. There are 32561 instances in the training data and 

16281 instances in the testing data. The data set provides basis to predict the income level of individuals and classify 

the personal income level by 50k US dollars per year. Before we start to design the neural network, data pre-processing 

is required.  

 

The Census dataset has enough instances for network training purpose, and it is a combination of categorical and 

continuous numeric attributes. The prediction problem is a typical classification problem which is suitable for the 

adaption of neural network method. 

2.1 Data Cleaning 

It is noticed that the raw data include some missing values. It is not appropriate to delete any rows with some data 

missing, as the completeness of the other non-missing values will be disrupted. Therefore, we need to handle the 

missing values using data cleaning techniques. The ‘?’ values should be replaced with np.nan, which can be handled by 

numpy as a kind of recognized empty value. 

2.2 Data Reduction 

The data provided by the donor have already been partly encoded by introducing independent numeric attributes. For 

instance, the attribute education_num is respectful to the adjacent attribute education, and they represent the same sort 

of concepts.  

Table 1.  Eduation-num and Education attribute values. 

Education-num Education 
1 Preschool 

2 1st-4th 

3 5th-6th 

4 7th-8th 

5 9th 

6 10th 

7 11th 
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8 12th 

9 HS-grad 

10 Some-college 

11 Assoc-voc 

12 Assoc-acdm 

13 Bachelors 

14 Masters 

15 Prof-school 

16 Doctorate 

 
As Education-num is a numeric substitution of attribute Education and it is a continuous set of values, the network 

prediction could skip Education and adopt Education-num. We must pinpoint that the encoding in Education-num might 

not be the perfect way to describe the characteristic of different education levels. Some kinds of better rescaling might 

be an effective method to improve the accuracy of the classification. 

 

Similarly, we choose Workclass and neglect Occupation because Workclass is a higher level of categorization of 

occupations; and keep Relationship and get rid of Marital_status, because the Relationship attribute covers most the 

information in the Marital_status through deduction, one example is that a ‘Married’ in Marital_status is a prerequisite 

of value ‘Husband’ or ‘Wife’ in the attribute Relationship. 

 

Data reduction is a trade-off between the data integrity and the model training cost. This might have negative effect in 

the accuracy of the network’s final prediction, but helpful when reducing the complexity of the dataset and respectful 

neural network training.  

2.3 Data Transformation 

For neural network building, the data should be of proper pattern. The categorical data should be all encoded in an 

appropriate manner. According to Bastos and Gedeon (1995), a group of columns with numeric values can be a 

substitution of single column with a wide range of values. So-called “One-Hot Vector” encoding pattern is suitable for 

neural network building, as a group of columns with value 0 or 1 work simultaneously to describe a single categorical 

value. Compared to value them a series of number in the same column, one-hot encoding pattern can be handled better 

by the decision functions. For instance, the categorical attribute Workclass in the raw data set have 8 different values. It 

could be transformed into 8 one-hot attributes subsequently: workclass_private, workclass_self_emp_not_inc, 

is_self_emp_inc, is_federal_gov, is_local-gov, is_state-gov, is_without-pay, is_never-worked. 

2.4 Generalization 

Most of the categorical attributes in the dataset could be directly transformed into one-hot encoding pattern, yet for the 

attribute native_country there are too many possible values, making the following network training hard and of high 

time cost because of the subsequent large number of added. There are 41 possible country values in total; in the training 

data most of instances are of value United-States, for some categories such as Laos and Outlying-US, their frequencies 

are less than 0.1% as for the entire dataset. Therefore, it is necessary to reorganize this attribute into a binary split: 
United-States (Value 1) and Non-United-States (Value 0). 

Table 2.  Modified training dataset pattern. 

Column Attribute name Comments 
1 Age  

2 Fnlwgt  

3 Education_num  

4 Sex Valued into 0,1 

5 Capital_gain  

6 Capital_loss  

7 Hours_per_week  

8 Native_country Transformed, generalized into 2 

values: US and non-US 

9 workclass_private Deducted from workclass 

17 workclass_self_emp_not_inc Deducted from workclass 

18 workclass_self_emp_inc  Deducted from workclass 

19 workclass_federal_gov  Deducted from workclass 

20 workclass_local_gov  Deducted from workclass 

21 workclass state_gov Deducted from workclass 

22 workclass _without_pay  Deducted from workclass 

23 workclass_never_worked Deducted from workclass 

24 Relationship_Wife Deducted from Relationship 



25 Relationship_Own-child Deducted from Relationship 

26 Relationship_Husband Deducted from Relationship 

27 Relationship_Not-in-family Deducted from Relationship 

28 Relationship_Otherrelative Deducted from Relationship 

29 Relationship_Unmarried Deducted from Relationship 

30 Race_White Deducted from Race 

31 Race_Asian_Pac_Islander  Deducted from Race 

32 Race_Amer_Indian_Eskimo Deducted from Race 

33 Race_Other Deducted from Race 

34 Race_Black Deducted from Race 

   

3   Neural Network 

A neural network is built for handling classification issue in the processed Census dataset. 

3.1 Network design overview 

To begin with, I build a basic feed forward neural network with 3 layers, one of them is a hidden layer. The input layer 

contains 27 neurons, representing the features of the Census dataset; the hidden layer has 100 neurons, using Sigmoid as 

activation function; the output layer has 2 neurons, representing the binary classes of prediction result. We set the 

original epoch number as 500, and its value could be higher in case of need. The the hidden layer should also be capable 

with all variable computing, so the minimum number of neurons in the hidden layer should be 27, which is the number 

of the input neurons, otherwise the fitting issue will be likely to appear. The learning_rate is set to be 0.01. The 
performance of the neural network will be evaluated using cross-entropy loss function. 

3.2 Optimisation Algorithms 

3.2.1 Stochastic Gradient Descent (SGD) 

The neural network is originally chosen to be trained with Stochastic Gradient Descent (SGD) as an optimiser, that will 

hold the current state and will update the parameters based on the computed gradients. Bottou (2010) pointed out that 

SGD algorithm is especially effective in large-scale computation. As our Census dataset has 27 feature attributes and 

over 30000 instances in the training set, SGD will benefit in the massive calculation and accelerate the classification. 

Nevertheless, the SGD optimizer has its drawback that unlike mini-batch training and Semi-Stochastic Gradient 

Descent (Semi-SGD) which update the gradients with each new training data sample, the weight calculations is based 

on a uniform noisy estimation of the entire dataset. This leads to moderately lower precision and fluctuation in the loss 

rate and the accuracy against the number of epochs. The result, 76%, is not comparable with other listed algorithms, this 

indicates that the raw dataset might be translated to the training data in a defective manner, it is also worthy to consider 

whether SGD is good enough as an optimization algorithm for this circumstance. 

3.2.2 Mini-batch Gradient Descent Algorithm 

The neural network is originally chosen to be trained with Stochastic Gradient Descent (SGD) as an optimiser, that will 

hold the current state and will update the parameters based on the computed gradients. Bottou (2010) claimed that SGD 

algorithm is not perfect because the algorithm use a static gradient all around. Compared to SGD, Mini-batch training is 

less cost-effective as it updates the gradient each batch. Theoretically, mini-batch training is a trade-off between GD 

and SGD, to get moderately high training efficiency while reducing part of model inaccuracy caused by SGD’s one and 

only gradient parameter. Papamakarios (2014) shows that Mini-Batch versions of SGD have predetermined sub-set of 

functions, which form the mini-batches. The algorithm then use the mini-batch instead of the single gradient. To see the 

result, please run the code_mini_batch.py. 

Fig. 1. Confusion matrix of mini-batch training model given hidden neuron=100, learning rate=0.01. 

     
Testing accuracy according to the confusion matrix: 76.58%, epoch=100, batch_size=800.  



Fig. 2. Accuracy rate(y) of mini-batch training model versus epoch(x), given hidden neuron=100, learning rate=0.01 

 

 

3.2.3 SGD using backpropagation as a gradient computing technique (Rprop) 

Resilient backpropagation (Rprop) is a fast first-order optimizer (Riedmiller and Braun, 1992). The Rprop algorithm 

only consider the sign of partial derivative over all patterns(not the magnitude) on each weight. Neural networktrained 

with SGD using Rprop as a gradient computing technique generally provides higher accuracy.    

 

3.2 Original Network test results and discussion 

According to Kohavi (1995), for the same adult dataset the Naïve-Bayes algorithm had accuracy between 83.5% and 

84% given 32500 instances; and the C4.5 decision tree algorithm had accuracy between 85% and 85.5% given 

approximately 32500 instances. 
 

In the meantime, the accuracy of the network prediction in training and test data is around 76%. The reason of lower 

accuracy is possibly the modification to the raw data. The information loss due to the dataset tailoring might result in 

the lower overall accuracy. 

 
The accuracy values for test data (76.52%) and training data (76.32%) are at a similar level, and This depicts that there 

is not overfitting issue during the model’s training, and the relatively low level of accuracy (compared 75%) means 

improvement steps are still required to increase the fitting quality. The possible solution might be reducing features, 

adopting better optimization algorithms, adding more hidden layers to make a deeper neural network or adding more 

neurons in the hidden layer. Enhancing the scale of epochs could also beneficial, given the chance of the accuracy curve 

keep going upward.  

Fig. 3. Confusion matrix given hidden neuron=100, learning rate=0.01 

  

Fig. 4. Loss rate given hidden neuron=100, epoch=5000, learning rate=0.01. 

 
 

It can be found that SGD-Resilient Backpropagation algorithm (Rprop) has a better testing accuracy compared to SGD 

(76.52%), as it helped the model prediction to acquire 83.08% accuracy in the test set. To see the result, please run the 

code_rprop.py.  

 



Fig. 5. confusion matrix for training and testing & accuracy given Rprop optimiser, hidden neuron=100, epoch=5000, learning 

rate=0.01 

   

3.3 Improvement step: Adding neurons in the hidden level 

According to we discussed above, more neurons and more epochs leads to higher accuracy anticipation. Given epoch 

value 5000 and hidden layer neuron value 500, we found that the test accuracy increased by 1% to 77.24%. However, 

further movement to increase the value of epochs or hidden layer neurons would be inappropriate, as the training will 

cost too long time and the training model often become over-fitted. 

 
To see the result, please run the code_hidden_neuron_500.py.  

Fig. 6. Loss rate(y) versus epoch(x), given SGD optimiser, hidden neuron=500, epoch=5000, learning rate=0.01 

 

Fig. 7. Accuracy (77.24%) for testing set and confusion matrix for training given hidden neuron=500, epoch=5000. 

 

3.4 Improvement step: 4-Layer DNN with Rprop and 120 neurons in hidden layers 

 

Fig. 8. Loss & Accuracy for testing set and the confusion matrix given hidden neuron=120, epoch=5000. 

 



The result(80.49% testing accuracy) is not as good as similar network with single hidden layer. Deeper neural 

networks(DNNs) tends to stick in the local extremum easier than 3-layer NNs. The sigmoid function is not the best 

choice for the activation function in deep feedforward networks, because with the increasing number of hidden layers, 

the sigmoid function leads to inevitable loss of information. Better choices for the activation function of DNN include 

Softmax and ReLU. To see the result, please run the dnn.py.  

3.4 Improvement step: Data normalization, further data generalisation and feature 

engineering 

In the first stage of the paper, we technically skipped the normalization of some feature attributes in the raw data set. 

This might affect the effectiveness of the processed training data. In this section, we set an approach to normalize the 

relevant data and check the result. 

 

Data Normalisation 

 

Gedeon and Bustos (1995) pointed out that normalization for input data is necessary to fit the logistic function in the 

neural network. Thus, we need to normalize the data over range 0 to 1.  

Amongst the training and testing dataset: 

The values of attribute ‘age’ are ranged from 17 to 90: divide the values by 100.  

The values of attribute ‘fnlwgt’ are ranged from 12285 to 1490400: divide them by 1600000.  

The values of attribute ‘education_num’ are ranged from 1 to 16: divide them by 16. 

The values of attribute ‘capital_gain’ are ranged from 0 to 99999: divide them by 100000. 

The values of attribute ‘capital_loss’ are ranged from 0 to 4356: divide them by 5000. 

The values of attribute ‘hours_per_week’ are ranged from 1 to 99: divide them by 100. 

 
After the data normalization in the datasets, with the same number of epochs (5000) and hidden neuron numbers (100) 

the classification accuracy increased from 83.08%(as shown in figure 5, the accuracy of the rprop) to 84.96%, the loss 

was reduced from 0.38(as shown in figure 6, the loss rate of the rprop) to 0.2524. The prediction accuracy in the 

training set was 88.08%. 

Fig. 9. Loss & Accuracy for testing set and the confusion matrix given 27 features, Rprop, hidden neuron=100, epoch=5000. 

  

  
 

To see the result, please run the data_normalised.py.  

 
Data re-generalisation 

It must be pointed out that improper generalization of data also causes loss of information and inaccuracy. For instance, 

the Nationality attribute has been simply split into 2 sub-classes: the US and non-US in previous steps. Because there 

are huge variances between individuals from non-US countries, such as Laos and France, allocating them to the same 

sub-class of the training data set might result in increased bias to the trained model. 

 
The original data set has 41 different values appeared in the column native_country: United-States, Cambodia, England, 

Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, 

Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, 

Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, 

Trinadad&Tobago, Peru, Hong, Holand-Netherlands. As the prediction target is financial-relevant, we could use 

geographic split together with categorization of national economic development level to make the final information 

extraction from the original native_country column.  

 



Among them, United-States, Puerto-Rico, Outlying-US(Guam-USVI-etc), England, Canada, Germany, Japan, Greece, 

South (Intended South Korea in the dataset), Italy, Poland, Mexico, Portugal, Ireland, France, Taiwan, Scotland, Hong 

(intended Hong Kong in the dataset), Holand-Netherlands are defined as “advanced economies” by the International 

Monetary Fund (2011). 

 
Language is an essential skill in the United States’ domestic job market. Those whose first language are English tend to 

be more competent for high-income opportunities compared to their counterparts from non-english-speaking countries 

or regions. Hence, English-speaking country origin is very likely to be relevant of being high-income individual. 

United-States, England, Canada, Outlying-US(Guam-USVI-etc), Philippines, Jamaica, Ireland, Scotland, 

Trinadad&Tobago, Hong (Hong Kong) are English-speaking areas. 
 
The re-generalised native_country forms 3 classes in total: the native_country_US, the native_country_advanced, and 

the native_country_eng_speaking. The optimized training dataset now has 29 feature attributes and 1 target attribute. 

After the re-generalisation of raw data, with the same number of epochs (5000), the classification accuracy increased 

from 84.96%(as shown in figure 5, the accuracy of the rprop) to 84.99%, the loss was reduced from 0.2524(the loss rate 

of the rprop) to 0.2499. The prediction accuracy in the training set was (23384+5337) / (23384+5337+1336+2504) 

=28721/32561=88.21%. 

Fig. 10. Loss & Accuracy for testing set and the confusion matrix given 29 features, hidden neuron=120, epoch=5000. 

  

  
The contribution of adding new generalisation did not meet our expection. This might because the new features we 

added are not as fit the classification as other existing features in the dataset. We probably used less appropriate 

separations for the countries. Via the new classes, some countries such as India and China still have no proper 

expressions.  

 

To see the result, please run the data_normalised_with_two_new_classes.py. 
 
Data Augmentation and feature engineering 
We mentioned that we have chosen to neglect most of the minor countries information in the column native_country. 

This might affect the effectiveness of the processed training data and harm the accuracy of the trained network. It is 

worthy to re-introduce all of them in new sub-classes to see what effect the relatively complete data set can make to the 

final loss rate and the accuracy. Later, a feature engineering process could be done to determine which attributes in the 

new training data set are the most redundant and whether it is reasonable to remove them and to achieve better training 

velocity for the neural network.  

The similar steps have been taken for re-introducing column occupation in one-hot encoding pattern. 

Fig.11. Loss & Accuracy for testing set and the confusion matrix given 83 features, Rprop, hidden neuron=300, epoch=5000. 

 

  



  
The expanded training dataset now has 83 feature attributes and 1 target attribute. For a straight-forward comparison, 

the original processed dataset has 27 features. The increased features mean much longer time is required for same 

epochs of network training, with more input neurons and hidden neurons to be handled.  

After the data’s re-generalisation process in the datasets, with the same number of epochs (5000) and 300 hidden layer 

neurons, the classification accuracy for test set decreased from 84.96%(as shown in figure 5, the accuracy of the rprop) 

to 83.94%, however, the loss was reduced from 0.2524(as shown in figure 6, the loss rate of the rprop) to under 0.2. The 

prediction accuracy in the training set was (23726+6179) / (23726+6179+1662+994)=29905/32561=91.84%. Some sort 

of over-fit problem seems happened during the training process as the network got higher prediction accuracy in the 

training set compared to the results of the test set. The largely expanded dataset causes more missing values and 

subsequently more inaccuracy, as more missing values in the raw data become to take negative effect in the training 

procedure.  

 

To see the result, please run the data_normalised_with_83_features.py. 
 
Guyon and Elisseeff (2003) indicated that feature engineering benefits the overall accuracy of machine learning models. By trimming 

down the feature vectors using their relevance to the target, the neural networks can often earn more than some other models such as 

random forest model. In this paper, we used chi squared statistical test, RFE and genetic algorithm respectively for 

feature selection.  
The pool of candidate features (83 in total) as of previous model: 
age,fnlwgt,education_num,sex,capital_gain,capital_loss,hours_per_week,occupation_Tech_support,occupation_Craft_repair,occupation_Other_service,occupation_Sales,occupation_Ex

ec_managerial,occupation_Prof_specialty,occupation_Handlers_cleaners,occupation_Machine_op_inspct,occupation_Adm_clerical,occupation_Farming_fishing,occupation_Transport
_moving,occupation_Priv_house_serv,occupation_Protective_serv,occupation_Armed_Forces,native_country_advanced,native_country_eng_speaking,native_country_United_States,na

tive_country_Cambodia,native_country_England,native_country_Puerto_Rico,native_country_Canada,native_country_Germany,native_country_Outlying_US,native_country_India,nat

ive_country_Japan,native_country_Greece,native_country_South,native_country_China,native_country_Cuba,native_country_Iran,native_country_Honduras,native_country_Philippine

s,native_country_Italy,native_country_Poland,native_country_Jamaica,native_country_Vietnam,native_country_Mexico,native_country_Portugal,native_country_Ireland,native_countr

y_France,native_country_Dominican_Republic,native_country_Laos,native_country_Ecuador,native_country_Taiwan,native_country_Haiti,native_country_Columbia,native_country_

Hungary,native_country_Guatemala,native_country_Nicaragua,native_country_Scotland,native_country_Thailand,native_country_Yugoslavia,native_country_El_Salvador,native_coun

try_Trinidad&Tobago,native_country_Peru,native_country_Hong,native_country_Holand_Netherlands,workclass_Private,workclass_Self_emp_not_inc,workclass_Self_emp_inc,work

class_Federal_gov,workclass_Local_gov,workclass_State_gov,workclass_Without_pay,workclass_Never_worked,relationship_Wife,relationship_Own_child,relationship_Husband,rela
tionship_Not_in_family,relationship_Other_relative,relationship_Unmarried,race_White,race_Asian_Pac_Islander,race_Amer_Indian_Eskimo,race_Other,race_Black 

 

Univariate selection: chi squared statistical test using sklearn (selection on 68-feature set): 

Generally, we select features with higher chi-squared scores. To see the sample result, please run chi-squared.py. 

 
 

RFE (selection on the 68-feature set) 

The Recursive Feature Elimination (RFE) recursively removes attributes and builds a model on those remaining 

attributes. It uses the model accuracy to identify which attributes (and combination of attributes) contribute the most to 

predicting the target attribute. The sample feature ranking below uses RFE with the logistic regression algorithm to 

select the top k ranked features. To see the sample result, please run RFE.py. 

 

 
Genetic Algorithm(GA) for feature selection 

The genetic algorithm (GA) is inspired from genetic crossover and mutation process. GA starts with a candidate feature 

set called population, and filter the least fit offsprings after each round of ‘reproduction’. The filtering process is based 

on a fitness function. Compared to other feature selection algorithms, GA deal with large search spaces with high 

efficiency and is less likely to get local optimal result (Huang and Wang, 2006).  

The following implementation is based on the python framework of DEAP GLOBAL VARIABLES toolbox with 

SCOOP (Hold-Geoffroy, Yannick, Gagnon, Olivier, Parizeau, and Marc, 2014) imported. 

gen nevals avg      std       min     max      

0   100    0.7896160.0268298 0.76737 0.847217 

1   52     0.8194590.0219886 0.7685220.847217 

2   69     0.8317910.0166612 0.7685220.847601 



3   57     0.8397160.00879886 0.7696740.847601 

4   60     0.8430770.00495449 0.8082530.848369 

5   56     0.84461  0.00810718 0.7681380.84952  

6   64     0.84529  0.0111864  0.7656430.850288 

7   60     0.8466370.00812442 0.7685220.850288 

8   59     0.8478980.00220977 0.8360840.850288 

9   69     0.8480880.00801524 0.7696740.85048  

10  49     0.8490650.00274018 0.8335890.850864 

 

---Optimal Feature Subset(s)--- 

 

Percentile:    0.6069651741293532 

Validation Accuracy:   0.8536772608628896 

Individual:  [0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 

0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0] 

Number Features In Subset:  37 

Feature Subset: ['age', 'education_num', 'capital_gain', 'occupation_Machine_op_inspct', 'occupation_Adm_clerical', 

'occupation_Protective_serv', 'native_country_eng_speaking', 'native_country_United_States', 'native_country_England', 

'native_country_Outlying_US', 'native_country_India', 'native_country_Iran', 'native_country_Philippines', 'native_country_Italy', 

'native_country_Jamaica', 'native_country_Mexico', 'native_country_France', 'native_country_Laos', 'native_country_Ecuador', 

'native_country_Taiwan', 'native_country_Haiti', 'native_country_Hungary', 'native_country_Thailand', 

'native_country_Trinidad&Tobago', 'native_country_Hong', 'workclass_Self_emp_not_inc', 'workclass_Self_emp_inc', 

'workclass_Federal_gov', 'workclass_Local_gov', 'workclass_Never_worked', 'relationship_Wife', 'relationship_Husband', 

'relationship_Not_in_family', 'relationship_Other_relative', 'relationship_Unmarried', 'race_White', 'race_Other'] 

   
The model trained using the optimal feature subset: loss=0.2806, testing accuracy=84.71%. To see the result, please run 

the GA.py and the train_with_GA_opt.py. 
 

  

  



Conclusion and Future Work 

In this paper, we discussed different design and optimization methodologies of Neural network to settle the high-
dimensional income classification task based in the Census Income data set. After the data transformation, data 

generalisation, data normalization process and the feature selection step using genetic algorithm, the testing accuracy 

finally increased from the original 76.38% to approximately 85% (84.99% with 0.2499 loss rate for 29-feature training 

set and 84.71% with 0.2806 loss rate). The performance of the optimal neural network is better than the Naïve-Bayes 

algorithm (accuracy between 83.5% and 84%) and basically matches the C4.5 decision tree algorithm (Accuracy 

between 85%-85.5%). This proved that our neural network implementation is acceptable to handle classification tasks 

according to the 1990s standards. Further improvement can be made in the data cleaning such as tackling missing 

values. In the future research, we will also focus on advanced neural network technology such as deep learning(DNNs) 

and reinforcement learning to obtain a broader view for solving similar issues. 
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