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1 Abstract

Artificial neural network(ANN) can now be applied to solve a wide range of problems like pattern recognition,
generating synthetic data, etc. However, the existence of redundant features within training data and inap-
propriate hyper-parameter may jeopardize the training speed or the performance of an ANN. For example, too
many hidden neurons may lead to overfitting problem and ANN with insufficient hidden neurons may not well
model the complexity of the ground true patterns. In this paper, methods of feature selection and how to tune
the hyper-parameters for ANN are discussed and reported. This study used both the rule based statistical
methods(compute and evaluate statistical features of an ANN) and machine learning method(directly evaluate
the loss on different settings of an ANN) for ANN reduction. Specifically, the statistical reduction methods
contains error sign testing(EST, details in Section 3.3) and evaluating hidden neurons’ distinctiveness(details
in Section 3.4) and the machine learning method applied genetic algorithm(GA, details in Section 3.5) to find
best feature and hyper-parameter setting. All methods are applied and compared on a single one hidden layer
ANN for classification. The results show that by using the statistical reduction methods, the pruned ANN
can increase the training speed by 35.7%(from 0.145s to 0.092s) while maintaining the relatively high accu-
racy(95.17%) compared with other statistical machine learning methods(91.4% for support vector machine and
87.7% for k nearest neighbor[1]); by using GA for feature selection, the ANN tends to perform better than other
methods(96.36% accuracy). The results show that we could use methods discussed in this paper to greatly
improve the training time performance and the prediction performance of an ANN. And the methods could be
further applied or extended for other neural network structures.
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2 Introduction

An assumption in this paper is that all the Neural Network mentioned is a fully-connected feed forward neural
network.

In general, an over complex model tends to better fit the training data. However, it usually performs worse on
the testing data or generating synthetic data. This problem is known as overfitting in machine learning termi-
nology. In statistics, it is called the balance between bias and variance. [2] shows how to decompose bias and
variance from loss function which is to be minimized. A good model should be in a good balance between bias
and variance. Some statistical approaches on how to prune an ANN are also discussed in [2] and [3]. Specifically,
I will talk about how to implement or adopt some approaches(EST for pruning training data, reducing hidden
neurons by computing distinctiveness and genetic algorithm for feature selection and hyper-parameter tuning)
in detail to solve classification problems.

Besides we can evaluate the statistical features(e.g., distinctiveness) of an ANN, we could also judge whether an
ANN has appropriate hyper-parameter setting or feature set by directly evaluating the loss(e.g., mean squared
error) or the measure of its output(e.g., accuracy). An near-optimal approach is to use GA[4]. We could
apply GA to a population of different hyper-parameter settings or training data settings and obtain the opti-
mized values for better performance. For example, GA can be adopted for selecting the features of training
data to get better result[4]. Other researches use GA to optimize hyper-parameters of classifiers. For example,
researchers found near-optimal hyper-parameters for support vector regression in forecasting tourism demand [5]

Since the complexity of ANN has been reduced, its ability of describing complex patterns may shrink. So
how much we should reduce the ANN highly depends on the patterns we get. The constraints of network
reduction methods are also illustrated in [2]. In addition, reduction methods may not improve the prediction
performance but can speed up the training time. So the prediction performance and the time performance of
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Figure 1: Samples of dataset

the ANN should be both considered. The measurements of the prediction performance may vary with the type
of problem we encounter. In [6], the paper discussed different measurements for different kind of problems and
their limitations. I choose to use the accuracy and Fl-score as my measurement(which will be described in
method section) for the classification problems. Besides, [7][8] talked about how cross validation can help us
obtain robust model and convincible results. Cross validation is also applied to my experiments.

The rest sections of this paper are organized as follows: I will discuss some considerations when construct-
ing a ANN and two reduction methods for ANN pruning in Section 3. In Section 4 talks about how those
methods perform on our actual image prediction problem. Finally, inspirations from experiments and possible
future work will be discussed.

3 Materials and Methods
3.1 Data

This study uses the Image Segmentation data set from UCI machine learning repository with 2310 instances,
20 attributes is created by C. Blake, E. Keogh, and C. J. Merz in Vision Group, University of Massachusetts|9].
The instances were drawn randomly from a database of 7 outdoor images. Each instance contains 19 real
number attributes(‘region-centroid-col’; ‘region-centroid-row’, ‘region-pixel-count’, ‘short-line-density-5’, ‘short-
line-density-2’, ‘vedge-mean’, ‘vegde-sd’, ‘hedge-mean’, ‘hedge-sd’, ‘intensity-mean’, ‘rawred-mean’, ‘rawblue-
mean’, ‘rawgreen-mean’, ‘exred-mean’, ‘exblue-mean’, ‘exgreen-mean’, ‘value-mean’, ‘saturatoin-mean’, ‘hue-
mean’) of a 3*3 pixels region of a image. The last attribute is a integer attribute indicates the image classes
which are brickface, sky, foliage, cement, window, path, grass corresponding to 1, 2, 3, 4, 5, 6, 7 respectively.
Sample of the data set is shown by Figure 1 The 19 real number attributes are normalized into zero-mean and
unit variance.

3.2 Training process for artificial neural network

The data mentioned in Section 3.1 was processed by 5 fold cross validation(details in Section 3.6) during training
and testing. Each fold contains 1848 data points for training and 462 data points for testing.

For the data set, there are 19 features to be learned in each data point and 7 different classes, so the neu-
ral network requires 19 input neurons and 7 output neurons. Since the data set has only 19 attributes and
relatively simple, we initialize the number of hidden neurons as 8. The cross entropy loss which is commonly
used in the classification problems|[10] is chosen to evaluate the output of the ANN. The cross entropy can be
computed by the equation 1

M
L=- Z Yo,clog(po,c) (1)
c=1

Note that M is the number of classes, ... is binary indicator shows whether a data o belongs to class ¢, po ¢
denotes the probability of data o belongs to class c. Because of the multi-class property of the data set, the
softmax function is used to normalize the 7 dimensional output vectors to let each element is bounded within
[0,1] and the sum of the elements is 1. The softmax function[11] is defined as

o(z) = Keif where j=1,...K (2)

> e

k=1

To update our ANN model in each iteration, proper learning algorithm is required. Rprop algorithm is one of the
adaptive and fast algorithm, and it avoids the inherent problem existed in pure gradient descent algorithms[12].



So in this study, the Rprop is chosen to be the weight updating algorithm.

The behaviour of this original unpruned NN is shown by Figure 2. Loss for both training set and test set
is decreasing rapidly, then the test set loss starts to increase since epoch 50 because of overfitting, so the num-
ber of epoch is set to 50 in order to avoid overfitting. Section 3.3, 3.4 and 3.5 will introduce techniques to prune
the initialized ANN discussed in the previous paragraph.
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Figure 2: The changes of cross entropy loss of an neural network

3.3 Error Sign Testing(EST)

EST is known as a training set pruning method whose main aim is to remove the noisy training data points.
First, during training, we need to find a proper epoch as a threshold that after this epoch training may start
to fit the outliers/noisy data[2].Such epoch could be found by inspecting Root-Mean-Squared-Error(RMSE) of
loss. I use the same method to detect such an epoch, as shown by Figure 3. We could see that at epoch 50, the
value of RMSE starts to oscillate.
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Figure 3: Example of how to choose a proper epoch

To save training time, when RMSE starts to oscillate, we could stop training, record the epoch number K,
then apply the pruning method described in the next paragraph and remove redundant patterns. Then retrain
the network using the clean dataset.

Within the K epochs, we compute the error vectors formed by differences between desired and predicted vec-
tor for each pattern. The desired vector is the target value(0-7) represented by one-hot vector. For example,



t3 =< 0,0,1,0,0,0,0 > where t¢,, denotes target value n. The predicted vector is the vector obtained from
output layer. The magnitude of the error vector of a good pattern is suppose to decrease in most of the K
epochs, see [2]. Let E,, denotes the magnitude of error vector computed at epoch n. The sign of E,, — E,,_1 is
recorded to represent whether the pattern move closer to desired output. Finally, the percentage of how many
negative signs shows up within the K epochs is computed to represent the general behaviour of the pattern.
Those patterns with low percentage negative error signs are regarded as noisy pattern and removed.

3.4 Distinctiveness

We can reduce the number of hidden neurons by evaluating the distinctiveness between each pair of hidden
units. A hidden activation vector formed by activation output of the neuron for each pattern is recorded. This
vector shows the functionality of this hidden unit, see [3]. We normalize the vectors to center them at 0.5,...,0.5
so that the angle between two vectors can be scaled to [0°,180°] instead of [0°,90°], then compute the angle
distances between each pairs. A pair of vectors with relatively low angle separation(like 15°) are regarded as
similar. It means the corresponding hidden neurons have similar functionality, so one of the neuron is removed
and its weights are added to the other neuron or we cut the number of hidden neurons by one and retrain the
network. A pair of vectors with relatively high angle separation(like 165°) are regarded as complementary. The
corresponding hidden neurons are less functional than other neurons, so all the two will be removed.

3.5 Genetic algorithm

We can optimize the feature set and hyper-parameter setting for our ANN by directly evaluating the loss.
One of such optimization techniques is GA. GA contains bio-inspired operators like crossover, mutation and
selection[13]. By applying these operators to the initialized population, we can gradually move towards the
optimal solution.

To apply GA to our ANN, the population should be initialized first. How to initialize the population highly
depends on the form of the target we want to optimize. In this study, we want to find the optimal subset of
features and the optimal number of hidden neurons for the ANN. So a simple binary vector can be used to
represent each population.

Specifically, in this study for feature selection, the 19 features of each data point can be represented by a
19 dimensional binary vector where ‘0’ element means the disappearance of the corresponding feature and ‘1’
means the appearance of the corresponding feature. For deciding the number of hidden neurons, similar binary
vectors can be used but its elements is used to compute the number of the hidden neurons. For example, 5 di-
mensional vector [0,0, 1,0, 1] can be converted to integer 20 by following 2° x 0+2! x0+22x 1423 x0+2%x 1 = 20
and a 5 dimensional vector can represent maximum 31 this way.

Note that, both feature set and the number of hidden neurons can be represented by one binary vector. This
can be achieved by splitting the binary vector into sub-vectors. For example, a 24 dimensional binary vector are
selected to find optimal feature set and the number of hidden neurons. There are 19 features and a maximum
31 hidden neurons. The 24 dimensional binary vector can be split into sub-vectors with 19 dimensions and 5
dimensions. The 19 dimensional sub-vector represents feature set. And the 5 dimensional sub-vector represents
the number of hidden neurons

By randomly generating such binary vectors 100 times, thus a population with size 100 is generated. Then
operators can be applied to the population. Selection is to find the fittest individual which will be operated by
crossover. The tournament selection is chosen in this paper because it can make use of the fitness information of
each individual and the diversity of chromosomes(features) is also kept by running ‘tournaments’[14]. Crossover
is to pass the fittest individual’s chromosomes(features) to the next generation. The simple two-point crossover
is adopted in this paper because there is no theory proves other crossover approaches outperform the two-point
method[15]. Mutation is to maintain the diversity of chromosomes(or explore fitter chromosome). Flip bit
mutation is used in this paper because the individuals is represented by binary vectors.

The fitness is chosen as the classification accuracy of our ANN model because our target is to improve the
classification accuracy. To obtain a relatively promising result in a short time period, the population size is set
to be 20, the generation is set to be 10 and the mutation rate is set to be 0.2 consider the complexity of the
data set is not quite high, but these parameters can be further tested and compared in the future.

Toolbox for employing GA in this paper is python package ‘Deap’[16]. In this paper, GA is ounly used to
select the best feature set because hyper-parameter selecting requires high dimensional population vector which



consumes lots of time to find the optimal vector. But how to select appropriate hyper-parameter has been
discussed in the precious two paragraphs.

3.6 Measurements and Validation

In this paper, I will use accuracy, precision, recall, F'1 score as our measurements because they can capture differ-
ent aspects of classification problem. Figure 4 shows how to construct such a matrix for two class classification
problem.

Predicted class

P N
True False
P | Positives Negatives
(TP) (FN)
Actual
Class
False True
N | Positives Negatives

(FP) (TN)

TP is correctly predicted event values
FP is incorrectly predicted event values
TN is correctly predicted no event values
FN is incorrectly predicted no event values
Figure 4: Confusion matrix for two class classification problem

There are 5 ordinal classes to be classified in our study, so the results for each class need to be macro-averaged
or micro-averaged in order to compare results for the 5 classes as one measure. Macro-averaging just takes
the average of the precision and recall of the system on different classes. For micro-averaging, we sum up the
individual true positives, false positives, and false negatives for different classes and then apply them to get the
accuracy, precision and recall. In experiments, we mainly focus on results computed by macro-average method
because we want to know how our model performs across all of the classes|[7]. The method is described in [7]
and follows the following computation:

K
S TP,
Accuracy = ICZIT 3)
K
Py
Macro — average of precision = k:Il( (4)
K
> Ry
Macro — average of recall = k=}( (5)

where N denotes the number of all predicted values, K denotes the number of classes, P is the precision for
class k, Ry is the recall for class k.

To make most use of the data, and to obtain convincible results, 5-folds cross validation is used in experi-
ments. That is, the training set is separated into five equal sized subsets. Five iterations are run and in each
iteration, we select a different subset(validation set) for testing and use the rest four subsets for training. There
are five results derived from testing on the five different validation sets. Those results are also averaged to get
the final results. The tools used for cross validation is python scikit-learn package described in [17].



4 Results and Discussion

For pattern reduction, the epoch K highly relies on the learning rate. It is reasonable because with a larger
learning rate, the loss will go down faster and the oscillation problem will arise earlier. So I first run 5-fold cross
validation to find a proper learning rate, the result is shown by Table 1. The learning rate with the highest
accuracy is selected, in this case, 0.01.

Learning Rate Accuracy/%
0.01 95.97
0.02 95.49
0.03 94.98
0.1 93.43

Table 1: Results for different learning rate

Then by testing the negative error sign percentage, 631 patterns whose negative error sign percentage below
15% are removed.

For hidden units reduction, the activation vectors are computed, the result for the first 8 patterns is shown by
Figure 5.

HiddenUnit0 HiddenUnit1 HiddenUnit2 HiddenUnit3 HiddenUnitd HiddenUnitS HiddenUnité HiddenUnit7

0 -0.124816 -0.057217 -0.178779 -0.139129 -0.014862 -0.006848 0.113614 -0.300000
1 0.101704 -0.265925 -0.159230 0.040442 0.183176 -0.043033 -0.178997 0.342771
2 -0.261697 -0.035993 0.299630 0.291197 -0.293739 -0.158556 -0.296025 0.082458
3 -0.038147 0.289375 -0.097326 0.042954 0.106021 0.114388 0.099427 -0.100424
4 -0.209005 0.108783 0.104694 -0.106488 0.265945 -0.097518 0.099790 -0.099990
5 0.096601 -0.095861 0.233670 -0.413742 -0.299959 0.043818 0.093823 0.299934
6 -0.267591 -0.442890 -0.239892 0.113771 0.499283 -0.100078 0315043 0.074187

iy 0.166620 0.109320 -0.169685 0.283770 0.071247 0.279131 0.316944 0177642

Figure 5: Activation vector for the first 8 patterns

Then the angle between each pair of hidden neuron activation vectors is computed, shown by Figure 6.

@1 85.459 24 71.4722

@ 2 164.24986 25 96.45926
@ 3 101.722466 2 6 101.165924
0@ 4 108.09507 27 132.9793
@ 5 88.259926 34 108.26589
@6 79.33924 35 78.97239
@ 7 50.939133 36 47.01897
12 97.01047 37 82.82205
13 77.808075 45 100.24521
14 65.99174 46 105.95421
15 99.93753 4 7 103.22966
16 76.627525 56 82.200226
17 83.57416 57 68.694954
23 79.44226 6 7 68.33448

Figure 6: Angle between each pair of hidden neuron activation vectors

We can see that the pair '0 2’ has angle 164° which are far more larger than the angle of the other pairs, so
these two neurons are complementary neurons and both of them are removed. For feature selection by using ge-



netic algorithm, the best individual feature set is represented by vector [1,1,1,0,0,1,1,1,1,1,1,1,1,1,0,1,1,1, 1],
that is, the 4th, 5th and 15th features are eliminated.

The speed performance and complexity between the original NN and the pruned NN is record by Table 2.

Training Time/s Training Hidden
Patterns Neurons
NN 0.145 1848 8
Pruned 0.092 1217 6
NN

Table 2: Comparison between original NN and pruned NN

We could say that, the training time are reduced significantly after pruning. However, for feature selection
by using GA, the process is quite time consuming, so only the training time for EST and distinctiveness methods
are reported in this paper.

Then the accuracy, precision, recall and F1 performance is compared by Table 3.

Accuracy/% Precision/% Recall/% F1/%
NN 95.76 95.77 95.73 95.72
Pruned 95.17 95.56 93.98 94.59
NN(EST+distincti
veness)
Pruned NN(GA) 96.36 96.85 96.01 96.43
KNN[1] 87.7 / / /
svm[1f 91.4 / / /

Table 3: Comparison between different algorithms, the kNN and SVM result are from [1]

Note that results on the same data set derived from [1] is also recorded. In [1], support vector machine
and k nearest neighbor algorithms are used for classifying the images. From Table 3, we could observe that
the accuracy of the pruned NN(95.17%) is almost the same as the original NN(95.76%). And compare the NN
methods with the statistical machine learning methods, we find that NN methods both lead to a better result.
The precision between the two NN methods is pretty close. Only the recall of the pruned NN(93.98%) is much
lower than the original NN(95.73%). We can obtain the best result by applying GA for feature selection, all
four measures are outperform other statistical or simple feed forward NN methods(96.36% accuracy, 96.85%
precision, 96.01% recall and 96.43% F'1 score). However, GA requires much longer time to get the fittest feature
set.

4.1 Conclusion and Future Work

By removing outliers in the training set, the prediction performance of the model should increase. However, we
could tell from Table2 that the pruned NN performs slightly worse than the original one. This may due to I
over dropped the patterns and the hidden neurons. So the threshold of reduction(negative error sign percentage
or the angle between hidden neuron activation vectors) plays an important role in the reduction process. We
should be very careful when determine their values.

Though the predicted performance of the pruned NN is slightly worse than the original one, the speed of
pruned NN could increase a lot. The results show that the reduction heuristic can improve the efficiency of a

NN.

By applying GA for feature selection, we could get the best accuracy which is 96.36%. The result shows



that the performance of classifier highly depends on the feature set and GA is a good candidate to find the
optimal feature set. However, we should take time into account when applying GA to an ANN model.

Although approaches discussed in this paper can efficiently improve the performance of an ANN model, there
are also limitations within this study.

This paper only brings up the idea of hyper-parameter selection by using GA, further experimentation should
be taken to validate the idea. The hyper-parameter of GA(population size, the number of generation, mutation
rate, etc.) should also be tested and selected carefully. And this paper only introduces the heuristics based on
experimentation, further theoretical proof needs to be given.

Since we have inspected the statistical methods(EST and distinctiveness) of pruning patterns and selecting
the number of hidden neurons in a certain layer, we may develop other statistical methods for evaluating other
hyper-parameters(e.g., the number of hidden layers) in the future. As the problems handled by neural network
are more and more complex, the neural network tends to be deeper and deeper, so methods of controlling or
analyzing deep neural network is required by now or the near future.
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