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Abstract 
 

          In this paper, I have used the MNIST (Modified National Institute of Standards and Technology database) database to 

get the idea of how computers can recognize handwritten digits. In this project, an attempt is made to do further research 

on the working of the deep neural network and extend my work from previous assignment by applying sensitivity a pruning 

technique. In this paper, a comparison has also been made to check the performance of different classifier algorithms. 

Consideration is made for various hyperparameters, and the convolutional neural network by taking account of the image 

length and width to make a stride. The network also comprises pooling layers, and max-pooling is applied to the network.  

The final results are compared with the research paper of “An Exploratory Study on MNIST Dataset” which was published 

in University of California, San Diego. [1] 
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1. Introduction 
 

       The growth of deep learning in the field of artificial intelligence has been astounding in 

the last decade with about 35,800 research papers being published since 2016. [2] With this 

much amount of research it has been tough to keep up with it for many research 

organizations and practitioners.   

     There is much research which has been made in the field of pattern recognition in recent 

years. Some astonishing results have also been achieved in the area of handwritten 

recognition. This rapid progress has resulted from a combination of many developments of 

powerful hardware, and due to the introduction of new algorithms.  

     In this research, I have extended my previous assignment work by applying sensitivity a 

pruning technique to a deep learning model for MNIST dataset with backpropagation. I have 

also looked at accuracy, and I have proposed a visualization of how data is getting trained in 

the final layer with that a comparison is also made with different machine learning 

algorithms. The final results are also compared with the previous research paper in which 

the technique of sensitivity was applied with one hidden layer. 

       A technique of pooling has also been applied to this dataset. The idea is to make the 

maximum pool that occurs in each convolution layer with a max value of 2 x 2 area. The 

objective of pooling was to sample input representation, with reducing the dimensions and 

allowing some assumptions to be made for features contained in the subregions behind. 

 

 



2. Dataset 
 

       The MNIST database consists of an enormous amount of data in handwritten digits. The 

original dataset from NIST is comprised of 60,000 examples and has a test set of 10,000 

examples. This dataset is a subset of one of the more massive sets from NIST. The digits sizes 

have been normalized and centred in a fixed size of an image. 

       The original dataset of NIST was of black and white images, which were normalized to fit 

in a 20 x 20-pixel box while also preserving the aspect ratio. The resulting dataset contains 

images with grey levels as a result of the anti-aliasing technique used by the normalization 

algorithm. The images were centered in a 28 x 28 image by computing the center of mass of 

pixels and translating the image as to position this point at the center of the 28 x 28 field. 

       The MNIST database was constructed from NIST Special database 3 and Special database 

-1 which has binary images of handwritten digits. The MNIST training set has 30,000 patterns 

from SD-3 and 30,000 from SD-1, with that the test set has 5000 patterns from SD-3 and the 

next 5000 from SD-1. The training set contained examples from approximately 250 writers, 

and 60,000 patterns were drawn from this training set. The creators of this dataset also 

made sure that both training and test set are disjoint. [3] 

 

3. Deep Neural Network 
     

    The network comprises 2 convolutional layers. The first hidden layer takes the input shape 

of (1, 28, 28) and the second layer takes the input shape of (16, 14, 14). The first layer also 

adds a filter of size 5 and to keep the length and width of this image as it is, I have added a 

stride of 1. The first convolutional layer gives us the output shape of (16, 28, 28) and the 

second layer gives an output shape of (32 x 7 x 7 x 10) which gives me a fully connected 

architecture with 10 output neurons, with this I have added Relu as an activation function in 

both the layers.     

      I have used Adam (Adaptive Moment Estimation) as an optimiser. Adam is an updated 

version of RMSProp optimizer. It is the algorithm which runs averages of both the gradients 

and the second moments of the gradient are used.  

 

         3.1 Sensitivity 
                

                    The sensitivity analysis of neural network can be defined by the contribution of a 

hidden neuron to its output layer. "The information used in approximating the sensitivity 

uses terms which are often available during training with back-propagation, such as the 

weight increments, and the partial derivatives of the error surface."[5]  

       We can achieve sensitivity in multiple ways. During the implementation of this network 

he has implemented sensitivity by calculating the output of hidden neurons to the output 

layer, and if any hidden neuron is achieving weight less than 0.1 in more than one epochs, 

and not contributing to the output layer, then the weights are turned to zero.  



           This will lead to zero contribution of that particular neuron in the network. Sensitivity 

helps in network reduction and also reduces the complexity of the network.  

         The loss can be generalize in a neural network by performing nonlinear differentiable 

mapping: I → K, from input x = (x1, x2... xI) to output o = (o1, o2... oK). Suppose x (n) ∈ Δ, 

where Δ is an open set. Since o is differentiable at x (n) we have o(x + Δ x) = o(x(n) ) + J(x(n) ) 

Δ x + g(Δ x), where J(x(n) ) is the Jacobson matrix.  

        There are multiple purposes of using sensitivity analysis in neural networks 

(Engelbrecht, 1999):  

Optimization: "In neural networks, derivatives of the objective function concerning the 

weights are computed to locate minima by driving these derivatives to 0. Second order 

derivatives have also been used to develop more sophisticated optimization techniques to 

improve convergence and accuracy. Koda (1995, 1997) employed stochastic sensitivity 

analysis to compute the gradient for time-dependent networks such as recurrent neural 

networks."  

Selective Learning: Hunt and Deller in 1995 used weights to determine its impact on each 

pattern when the data changes while training the dataset. They used a highly effective 

method in which they had chosen patterns which had a maximum effect on weight changes.  

[6] 

  

              3.2 Pooling layers 

                            
            Pooling layers are usually described immediately after the convolutional layer. A   

pooling       layer takes each feature map and outputs it from the convolutional layer and 

prepared a condensed feature map. During this research, I have applied a technique called 

max-pooling. The pooling region is set to 2 x 2, and a pooling unit outputs the maximum 

activation in this region.  

 

Fig 1. Pooling image. [4] 

  

                  I have applied three feature maps separately and then I have combined them for 

max pooling with the final output architecture of the network. This gives us 10 possible 

values from MNIST dataset with digits (“0”, ‘’1”, ‘’2” ... ”9”). 



 

Fig 2. Final output image of the network 

 

 

4. Results 
 

   When the network is getting trained at last layer it produces results something like in the 

Fig 3. 

 

 

Fig 3. Visualization of data in the last layer 

 

 

 

     The final accuracy of the network was 98% after applying sensitivity to the data, whereas 

compared to the network before sensitivity the accuracy was of 97.15%. It seems to be a 

good result, but the comparison of the results with research paper mentioned above shows 

that when the network gets trained with the combination of softmax regression and linear 

SVM, it produces an accuracy of 91%. However, the best accuracy one can get is of 99.17%, 

and this result is obtained when one trains network with SVM and KNN algorithm.  

 

 

                              



 

 

Fig 4. Final output  

 

        However, it took some time to train the data because the network wasn’t made 

compellingly. The CNN is most effective and takes the least amount of time when it takes 

with Softmax regression as compared with KNN. The short timing is also one of the 

advantages of using softmax model.  

     The model in the first epoch starts with 3%, and it increases with 4 % on every iteration. 

By the time it reaches the last iteration of the training process, the accuracy hits its highest 

point of 97%. Finally, in the testing set, the network produces an accuracy of 98%.  

 

5. Conclusion 
 

      This paper has produced an excellent score, and it also shows that sensitivity is essential to 

train the data, even though after applying sensitivity the result obtained made a minute 

difference, but these differences can make much difference when applied in the real world 

application.  

         The paper also focuses on different techniques and algorithms which can be used to 

improve the efficiency of the network. I found that network would give a better result if used 

with SVM with the combination of KNN (K Nearest Neighbour).  

          The paper also shows that max pooling is just not enough to get the results to improve the 

performance of the network we need to use better choices of pooling such as stochastic pooling 

to get the best results. 

        It also shows that when plenty of data is available then only it makes sense to apply deep 

neural network. Deep network is applied because of the complexity and to give better results. 



There are also certain methods which can only be applied in deep neural network which also 

helps us in improving performance. These techniques has also saved a lot of time and it reduces 

the time complexity.  
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