
	 1	

Optimization of Convolutional Neural Networks via
Distinctiveness Pruning

Siddharth Thakur
U6395848@anu.edu.au

Abstract –

Handwritten Digit Recognition has widely used to analyse various Deep learning
models. Convolution Neural network is used to evaluate its performance which consist
of 2 convolutional layers, 2 kernels, 2 pooling layers and 10 output label classes which
are implemented using torch.nn, torch.Tensor, and tested with the help of MNIST
dataset. In this paper, I compare the result of distinctiveness pruned convolutional
neural network with the Handwritten Digit Recognition Using Deep Learning paper
[1]. Using this I got 97% of accuracy for the pruned network in the comparison of
98.72%.

Keyword: Convolutional Neural Network, Distinctiveness Pruning, kernels, Full
Connected layers, MNIST dataset.

1. Introduction

1.1. Motivation

Deep Neural Networks (DNN) have outperformed many shallow algorithms such as
computer vision, automatic speech recognition etc. It has been established that strength of
DNN comes from large parameter space and hierarchical structure. Hence reducing the
complications in the DNN is going to be so beneficial when compare to computing cost and
time [2]. The dataset is combination of huge number of examples in both test and training
set and it is ideal dataset for the DNN which I can use to reduce the network size using
pruning.

1.2. Dataset
I have used dataset from MNIST (Mixed National Institute of Standards and Technology)
database. It is the database of hand written digits which are composed of training sets of
60000 examples and a test set of 10000 examples. It is the subset of the NSIT which is much
larger database. These digits are size- normalized and centred in the fixed size image. First
of 5000 examples of the test set in the MNIST database are taken from NIST training set
and remaining is taken from NIST test set. More Importantly, first 5000 examples of test
sets are better and more visible however last 5000 examples are not very clear. Both training
set and test set consist of label values from 0 to 9. Their image files have organised pixel in
row-wise with pixel value ranging from 0 to 255. The pixel value 0 represents white
background and 255 represents black background. Each pixel is converted into number
between 0 (black) and 1(white). It is saved in the vector and label of each image is saved in
one hot encoding. [3] [4]

	 2	

1.3. Problem Description
I implemented the convolution neural network (CNN) to classify the handwritten digits
taken from the MNIST dataset and then I implemented the network pruning to optimize the
CNN.

1.3.1. Investigation on the CNN Model
CNN is a feed forward Artificial Neural Network where the connectivity between neurons
are inspired by visual cortex. They have learnable weights and biases. Each neuron receives
inputs, execute dot product and follows it with non-linearity. The network is arranged in the
form of width, height, and depth. It expresses a differentiable score function that is further
allowed by ReLU function. [1]

Figure 1: Layout of CNN [1]

 5 layer that are connected in CNN are:

 1.3.1.1. Input Layer

 It includes the input which is pixel value in the case for our dataset. [1]

 1.3.1.2. Convolutional Layer

 This layer get the result from neurons that is connected to input layers and then each filter
 slides over the input matrix and get the max intensity pixel in the output. [1] This could be
 multiple layers.

 1.3.1.3. Rectified Linear Unit Layer

 It applies an element wise activation function on the image data. It is important that
 values are not changed by back propagation hence we apply Softmax function. [1]

 1.3.1.4. Pooling Layer

 It performs the down sampling operation to reduce the spatial dimensions. It helps to
 reduce the parameters, computation in the network and also control the overfitting of the
 network. [1] This is also could be multiple layers.

 1.3.1.5. Fully Connected Layer

 It is very similar to Artificial Neural Networks (ANN) when all the neurons are connected
 with each other i.e. all the activation of previous layers is connected in neural networks. [1]

	 3	

Figure 2: Experimental view of CNN

1.3.2. Investigation on Distinctiveness Pruning Measure

Deep Neural Networks are used in computer vision and speech recognition however, these
algorithms are computationally expensive and use lots of memory. Therefore, it reduces the usage
where there is hardware limitation exist. This is where pruning is used because it has ability to
reduce the computation and the memory without reducing the accuracy further [6]. Aim of the
pruning is to select the parameters for deletion and improve training and generalization. Pruning
is achieved by particle filtering where configurations are weighted by misclassification rate. It
actually drops the parameters with values below the threshold. It is effective for network
compression and provide good performance in the intra-kernel pruning. It has used the
distinctiveness [6] pruning measures to ensure optimal reduction of hidden neurons from fully
connected layer.

2. Method

2.1. CNN Implementation

2.1.1. Input

The input is the MNIST data which is going to tested in 10000 examples which are 784 d-array
of pixels. Hence the pre-processed inputs would be 28X28 matrix of pixels consist of 0s and 1s.

2.1.2. Network Architecture

CNN involves convolution layer, reLU functions and pooling layer. I have used 2 convolutional
layers. First convolutional layer has 10 filters with dimensions of 24X24 and the second
convolutional layer has 20 filters with the dimensions of 8X8 matrix size. I have used two kernel
filters for two convolutional filter with the sliding window size of 5X5. Since CNN uses back
propagation, ReLU reduces the probability of vanishing gradient and sparsity. It ensures that we
don’t lose important data and removes the duplication of data having pixel values of 0. [1] I have
trained my network for 5 epochs for a batch size of 6400 training examples. Hyper parameter-
learning rate is kept low (0.01) to make non-negative progress on the loss function [5]. Another
hypermeter- momentum is used to build the parameter vectors in the direction of consistent
gradient and also to achieve better converge rate [7].

	 4	

2.1.3. Pooling Layers

It extracts the pixels from ReLU function and down sample it. I have used two such layers with
12X12 and 4X4. It actually pools the pixel of the image and form a new image with new matrix
of the mentioned dimensions. The same functionality works in the second filter which actually
reduces image further small size. I have used max pooling which will extract the maximum value
in the matrix of 12X12 in the first pooling layer and same in the matrix of 4X4 in the second
pooling layer [5]. Pooling layers’ help make the representation more invariant, it helps in
covering larger part of inputs by reducing the spatial dimensionality and it makes the
optimization easier [6].

2.1.4. Full Connected Layers

There are 320 and 50 hidden neurons in fully connected convolutional layers with 320X50
connections and it is connected to Softmax classifier that returns the probability of 10 class labels
of 10 handwritten images. Softmax classifier is generalization of binary form in logistic
regression. It maps the output class label with simple dot product of weight and data [1].

2.2. Distinctiveness Pruning Implementation

2.2.1. Distinctiveness Pruning

The process of network reduction is taken from the Network Reduction Technique paper [8].
This has been taken from my previous research paper. I have used distinctive measure to verify
how much the hidden neurons of fully connected layers are similar or different. It is tricky to
analyse the minimum number of hidden neuron for CNN to work and provide similar amount of
accuracy. It also important to rule of thumb in the DNN when network fails to learn to recognise.
This means we can always add neurons till the point network generates the best accuracy and
after that I can eliminate the neurons till the point accuracy is not affected dramatically [8]. This
increase the efficiency of the network and less computation cost with minimum size of network
[8].

2.2.2. Parameter Selection

I took the vectors of the neurons in the fully connected layers. I then evaluated their angles
between them and compare every hidden neuron in the fully connected layer. I used Cos inverse
function to evaluate the angle. There is a bit difference from the previous pruning
implementation. Here, I used to eliminate the neurons for the angle greater than 130 and smaller
than 55. After doing many experimental iteration, I observed that most of the angles lies between
60º and 120º. Hence, I decided to eliminate the neurons which are beyond this range because any
neuron’s vector angle less than 60º are similar thereby, I added the weight to the neuron from
which it was compared and beyond 120º are different. Therefore, I able to eliminate 10 hidden
neurons and also, I ran pruning process at the 3rd epoch training only because I wanted my network
to learn something before I reduce the network size.

	 5	

3. Results and Discussion
The loss function on training set and accuracy on the test set of the MNIST data is calculated.
The accuracy is drawn for the test set by running through number of epoch. So, at this point I
have total of 370 hidden neurons including both convolutional layers and out of that 6 neurons
are pruned at the 1st epoch only and I was computing the accuracy with 364 neurons for 10000
test set and I got 97% accuracy which is remarkable when compare to 500 hidden neurons used
in the paper [1] to achieve the accuracy of 98.72%. Figure 3, 4 and 5 are result summary when
network is pruned at 1st epoch. I ran 50 epochs to achieve the result however, it depends on how
much accuracy you want to receive and we can adjust learning rate, no of epochs, momentum
and even number of hidden neurons.

Figure 3: Loss Function

 Figure 4: Test Accuracy

Figure 5: Output after Pruning at 3rd epoch

	 6	

I ran some several tests when I pruned network at 30th epoch where I only left with 321 hidden
neurons which further reduced the accuracy to 28% and this is not ideal. Figure 8 and 9 represent
the number of hidden neurons left after pruning and loss values respectively. and then I decided
to prune the network at 3rd epoch which reduces the hidden neurons to 325 and I recorded the
accuracy of 88%. Figure 6 and 7 represent the number of hidden neurons left after pruning and
loss values respectively. I observed that pruning does reduce the computation complexity
however it also reduces the accuracy. This is because that I did one shot pruning. This is not
iterative pruning and only done once. Hence when pruning is done at early stages when network
already consist more than 90% of neurons, convergence (weights of neurons get merged) time
decreases and accuracy increases and similarly, when pruning is done on later stages then
convergence time increases and accuracy decreases [7]. This is shown in above result. After that
the network performance regresses. It is for the best interest how much pruning we need to do to
get the optimum result. Even after pruning, the accuracy of test set reduces when compare to
original network. Hence pruning should be done at optimum level.

Figure 6: Output after Pruning at 3rd epoch

Figure 7: Output after pruning at 30th epoch

4. Conclusion and Future Work
I applied CNN on MNSIT data to recognise the handwritten digits. CNN model has 2
convolutional layers, 2 pooling layers operated with max pooling, 2 kernels and 10 output classes.
I ran several iterations after applying distinctiveness pruning for the better result and then
compared my result with the other research paper [1]. I achieved the best result of 97% which is
bit less when compared to 98.72% of the research paper.

In addition to that, I found that with dense feature set it can be complex to extract the feature or
even find the output label classes. Also, noise in the feature set reduces the accuracy as well. I
think the use of genetic algorithm to determine optimal feature set to classify the digits is good
application for this dataset in the future. I would like to work with genetic algorithm and using
Simplifying Hand written digit recognition paper [9] for further exploration.

	 7	

5. References
1. Dutt, A., 2017. Handwritten Digit Recognition Using Deep Learning 6, 8.

2. Tu, M., Berisha, V., Cao, Y., Seo, J., 2016. Reducing the Model Order of Deep Neural
 Networks Using Information Theory. ArXiv160504859 Cs.

3. MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges [WWW
 Document], n.d. URL http://yann.lecun.com/exdb/mnist/ (accessed 5.30.18).

4. Zhang, B., Yin, M., Lin, X., Zhu, Z., n.d. An Exploratory Study on MNIST Dataset 6.

5. CS231n Convolutional Neural Networks for Visual Recognition [WWW Document], n.d.
 URL http://cs231n.github.io/neural-networks-3/ (accessed 5.30.18).

6. CS231n Convolutional Neural Networks for Visual Recognition [WWW Document], n.d.
 URL http://cs231n.github.io/convolutional-networks/#pool (accessed 5.30.18).
7. Frankle, J., Carbin, M., 2018. The Lottery Ticket Hypothesis: Finding Small, Trainable
 Neural Networks. ArXiv180303635 Cs

8. Gedeon, T.D. and Harris, D. (1991) "Network Reduction Techniques," Proceedings
 International Conference on Neural Networks Methodologies and Applications, AMSE, San
 Diego, vol. 1: 119-126.

9. Parkins, A.D., Nandi, A.K., n.d. Simplifying Hand Written Digit Recognition Using A
 Genetic Algorithm 4

