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Abstract – 

Handwritten Digit Recognition has widely used to analyse various Deep learning 
models. Convolution Neural network is used to evaluate its performance which consist 
of 2 convolutional layers, 2 kernels, 2 pooling layers and 10 output label classes which 
are implemented using torch.nn, torch.Tensor, and tested with the help of MNIST 
dataset. In this paper, I compare the result of distinctiveness pruned convolutional 
neural network with the Handwritten Digit Recognition Using Deep Learning paper 
[1]. Using this I got 97% of accuracy for the pruned network in the comparison of 
98.72%.  
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1. Introduction  

 

1.1. Motivation 

Deep Neural Networks (DNN) have outperformed many shallow algorithms such as 
computer vision, automatic speech recognition etc. It has been established that strength of 
DNN comes from large parameter space and hierarchical structure. Hence reducing the 
complications in the DNN is going to be so beneficial when compare to computing cost and 
time [2]. The dataset is combination of huge number of examples in both test and training 
set and it is ideal dataset for the DNN which I can use to reduce the network size using 
pruning. 

 

1.2. Dataset 
I have used dataset from MNIST (Mixed National Institute of Standards and Technology) 
database. It is the database of hand written digits which are composed of training sets of 
60000 examples and a test set of 10000 examples. It is the subset of the NSIT which is much 
larger database. These digits are size- normalized and centred in the fixed size image. First 
of 5000 examples of the test set in the MNIST database are taken from NIST training set 
and remaining is taken from NIST test set. More Importantly, first 5000 examples of test 
sets are better and more visible however last 5000 examples are not very clear. Both training 
set and test set consist of label values from 0 to 9. Their image files have organised pixel in 
row-wise with pixel value ranging from 0 to 255. The pixel value 0 represents white 
background and 255 represents black background. Each pixel is converted into number 
between 0 (black) and 1(white). It is saved in the vector and label of each image is saved in 
one hot encoding. [3] [4] 
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1.3. Problem Description 
I implemented the convolution neural network (CNN) to classify the handwritten digits 
taken from the MNIST dataset and then I implemented the network pruning to optimize the 
CNN. 

 

1.3.1. Investigation on the CNN Model 
CNN is a feed forward Artificial Neural Network where the connectivity between neurons 
are inspired by visual cortex. They have learnable weights and biases. Each neuron receives 
inputs, execute dot product and follows it with non-linearity. The network is arranged in the 
form of width, height, and depth. It expresses a differentiable score function that is further 
allowed by ReLU function. [1]  

 
Figure 1: Layout of CNN [1] 

         

        5 layer that are connected in CNN are: 

        1.3.1.1. Input Layer 

         It includes the input which is pixel value in the case for our dataset. [1] 

        1.3.1.2. Convolutional Layer 

        This layer get the result from neurons that is connected to input layers and then each filter        
        slides over the input matrix and get the max intensity pixel in the output. [1] This could be          
        multiple layers. 
 

        1.3.1.3. Rectified Linear Unit Layer 

         It applies an element wise activation function on the image data. It is important that        
         values are not changed by back propagation hence we apply Softmax function. [1] 
 
        1.3.1.4. Pooling Layer 

         It performs the down sampling operation to reduce the spatial dimensions. It helps to       
         reduce the parameters, computation in the network and also control the overfitting of the  
         network. [1] This is also could be multiple layers. 
 
       1.3.1.5. Fully Connected Layer 

       It is very similar to Artificial Neural Networks (ANN) when all the neurons are connected 
       with each other i.e. all the activation of previous layers is connected in neural networks. [1]   
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Figure 2: Experimental view of CNN 

 

1.3.2. Investigation on Distinctiveness Pruning Measure 

Deep Neural Networks are used in computer vision and speech recognition however, these 
algorithms are computationally expensive and use lots of memory. Therefore, it reduces the usage 
where there is hardware limitation exist. This is where pruning is used because it has ability to 
reduce the computation and the memory without reducing the accuracy further [6]. Aim of the 
pruning is to select the parameters for deletion and improve training and generalization. Pruning 
is achieved by particle filtering where configurations are weighted by misclassification rate. It 
actually drops the parameters with values below the threshold. It is effective for network 
compression and provide good performance in the intra-kernel pruning. It has used the 
distinctiveness [6] pruning measures to ensure optimal reduction of hidden neurons from fully 
connected layer. 

 

2. Method  
 

2.1. CNN Implementation 

 

2.1.1. Input 

The input is the MNIST data which is going to tested in 10000 examples which are 784 d-array 
of pixels. Hence the pre-processed inputs would be 28X28 matrix of pixels consist of 0s and 1s. 

 

2.1.2. Network Architecture 

CNN involves convolution layer, reLU functions and pooling layer. I have used 2 convolutional 
layers. First convolutional layer has 10 filters with dimensions of 24X24 and the second 
convolutional layer has 20 filters with the dimensions of 8X8 matrix size. I have used two kernel 
filters for two convolutional filter with the sliding window size of 5X5. Since CNN uses back 
propagation, ReLU reduces the probability of vanishing gradient and sparsity. It ensures that we 
don’t lose important data and removes the duplication of data having pixel values of 0. [1] I have 
trained my network for 5 epochs for a batch size of 6400 training examples. Hyper parameter- 
learning rate is kept low (0.01) to make non-negative progress on the loss function [5]. Another 
hypermeter- momentum is used to build the parameter vectors in the direction of consistent 
gradient and also to achieve better converge rate [7].  
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2.1.3. Pooling Layers 

It extracts the pixels from ReLU function and down sample it. I have used two such layers with 
12X12 and 4X4. It actually pools the pixel of the image and form a new image with new matrix 
of the mentioned dimensions. The same functionality works in the second filter which actually 
reduces image further small size. I have used max pooling which will extract the maximum value 
in the matrix of 12X12 in the first pooling layer and same in the matrix of 4X4 in the second 
pooling layer [5]. Pooling layers’ help make the representation more invariant, it helps in 
covering larger part of inputs by reducing the spatial dimensionality and it makes the 
optimization easier [6].  

 

2.1.4. Full Connected Layers 

There are 320 and 50 hidden neurons in fully connected convolutional layers with 320X50 
connections and it is connected to Softmax classifier that returns the probability of 10 class labels 
of 10 handwritten images. Softmax classifier is generalization of binary form in logistic 
regression. It maps the output class label with simple dot product of weight and data [1].   

 

2.2. Distinctiveness Pruning Implementation 
 

2.2.1. Distinctiveness Pruning 

The process of network reduction is taken from the Network Reduction Technique paper [8]. 
This has been taken from my previous research paper. I have used distinctive measure to verify 
how much the hidden neurons of fully connected layers are similar or different. It is tricky to 
analyse the minimum number of hidden neuron for CNN to work and provide similar amount of 
accuracy. It also important to rule of thumb in the DNN when network fails to learn to recognise. 
This means we can always add neurons till the point network generates the best accuracy and 
after that I can eliminate the neurons till the point accuracy is not affected dramatically [8].  This 
increase the efficiency of the network and less computation cost with minimum size of network 
[8]. 

 

2.2.2. Parameter Selection 

I took the vectors of the neurons in the fully connected layers. I then evaluated their angles 
between them and compare every hidden neuron in the fully connected layer. I used Cos inverse 
function to evaluate the angle. There is a bit difference from the previous pruning 
implementation. Here, I used to eliminate the neurons for the angle greater than 130 and smaller 
than 55. After doing many experimental iteration, I observed that most of the angles lies between 
60º and 120º. Hence, I decided to eliminate the neurons which are beyond this range because any 
neuron’s vector angle less than 60º are similar thereby, I added the weight to the neuron from 
which it was compared and beyond 120º are different. Therefore, I able to eliminate 10 hidden 
neurons and also, I ran pruning process at the 3rd epoch training only because I wanted my network 
to learn something before I reduce the network size. 
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3. Results and Discussion  
The loss function on training set and accuracy on the test set of the MNIST data is calculated. 
The accuracy is drawn for the test set by running through number of epoch. So, at this point I 
have total of 370 hidden neurons including both convolutional layers and out of that 6 neurons 
are pruned at the 1st epoch only and I was computing the accuracy with 364 neurons for 10000 
test set and I got 97% accuracy which is remarkable when compare to 500 hidden neurons used 
in the paper [1] to achieve the accuracy of 98.72%. Figure 3, 4 and 5 are result summary when 
network is pruned at 1st epoch. I ran 50 epochs to achieve the result however, it depends on how 
much accuracy you want to receive and we can adjust learning rate, no of epochs, momentum 
and even number of hidden neurons. 

 
 

          
           
 
 
 
 
 
 
 
 
 

Figure 3: Loss Function 

 
 
 
 

  
   
 
 

     

 

        Figure 4: Test Accuracy 

 
 
 
 
 
 
 
 

Figure 5: Output after Pruning at 3rd epoch   
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I ran some several tests when I pruned network at 30th epoch where I only left with 321 hidden 
neurons which further reduced the accuracy to 28% and this is not ideal. Figure 8 and 9 represent 
the number of hidden neurons left after pruning and loss values respectively. and then I decided 
to prune the network at 3rd epoch which reduces the hidden neurons to 325 and I recorded the 
accuracy of 88%. Figure 6 and 7 represent the number of hidden neurons left after pruning and 
loss values respectively. I observed that pruning does reduce the computation complexity 
however it also reduces the accuracy.  This is because that I did one shot pruning. This is not 
iterative pruning and only done once. Hence when pruning is done at early stages when network 
already consist more than 90% of neurons, convergence (weights of neurons get merged) time 
decreases and accuracy increases and similarly, when pruning is done on later stages then 
convergence time increases and accuracy decreases [7]. This is shown in above result. After that 
the network performance regresses. It is for the best interest how much pruning we need to do to 
get the optimum result.  Even after pruning, the accuracy of test set reduces when compare to 
original network. Hence pruning should be done at optimum level. 

 
 
 
 

 

 

Figure 6: Output after Pruning at 3rd epoch  

 

  
   

 
 
 

 

Figure 7: Output after pruning at 30th epoch  

 

4. Conclusion and Future Work  
I applied CNN on MNSIT data to recognise the handwritten digits. CNN model has 2 
convolutional layers, 2 pooling layers operated with max pooling, 2 kernels and 10 output classes. 
I ran several iterations after applying distinctiveness pruning for the better result and then 
compared my result with the other research paper [1]. I achieved the best result of 97% which is 
bit less when compared to 98.72% of the research paper. 

In addition to that, I found that with dense feature set it can be complex to extract the feature or 
even find the output label classes. Also, noise in the feature set reduces the accuracy as well. I 
think the use of genetic algorithm to determine optimal feature set to classify the digits is good 
application for this dataset in the future. I would like to work with genetic algorithm and using 
Simplifying Hand written digit recognition paper [9] for further exploration.  
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