
IMPROVING NEURAL NETWORK BY USING

DIFFERENT METHOD

Peini Zhu
College of computer science and engineering, Australia National University

u6125835@anu.edu.au

Abstract. Use neural network to solve a two classes logistic regression problem,

predict the mushroom whether it is poisonous. Improving the network model by

comparing different preprocessing data method, comparing different activation

function, comparing different opitmizer gradient algorithm in traditional

feedforward neural network by using error back propagation algorithm.

Improving the network by using sharing weight bidirectional network model.

Analysed the result of training mushroom dataset, and evaluate the convergence

ability and generalization ablity of this network model.

Keywords: Adam gradient, bidirectional network, share weight, Relu activation

1 Introduction

Artificial neural network is very popular nowadays, especially the feedforward

neural network is very traditional. Usually using error back propagation algorithm to

train weight in neural network. In this paper, starting building a simple feedforward

neural network with error back propagation to train a logistic regression mushroom

dataset. Then, improving the neural network step by step. There are 2 things important

in feedforward neural network, one is activation function, the other is optimize gradient

algorithm. Try to compare the difference of activation function (Relu, sigmoid, tanh,

log sigmoid and SoftMax), and select the best one for this training set to improve the

accuracy. Try to compare the convergence of using different optimize gradient

algorithm (SGD, Momentum, AdaGrad, RMSprop, Adam), and use the best optimizer

to improve the network model. Try to use sharing weight bidirectional network model

to improve the testing accuracy, improve the normalization ability of this network

model. Last, compare the difference performance of each step, and analysis the reason,

also compare to training result of using traditional machine learning method, to analysis

the benefit of using neural network training model.

2 Dataset

Choose Mushroom Data Set 1 from the UCI website as training and testing data. This

dataset is a traditional classification problem with discrete data feature, which will be

good for learning logistic regression problems in neural network.

2

This dataset has 8124 instances, with 22 attributes. The aim of this classification

problem is trying to find out whether this mushroom is poisonous or edible (also tagged

as ‘labels’). The shape of this dataset is (8124*23), the first column is 'labels', the

column 1-23 are 22 attributes

No null data in this dataset, and 2480 missing values, which are all for attribute

‘stalk-root’. There are 2 classes in this problem. The description of this dataset pointed

out that the edible labels (represent as ‘e’ at the first column) has 4208 instances

(51.8%), and poisonous labels (represent as ‘p’ at the first column) has 3916 (48.2%).

2.1 Pre-processing Data

This dataset is using 22 features collected from a mushroom, then using these features

to estimate edible or poisonous. Each of input data is a vector with 22 features, in raw

data file, all features represent as a letter. Usually, we need to transfer the value of each

feature into integer. So, use feature ‘cap-shape’ as an example, the easiest way is to use

0 represent ‘b’, 1 represent ‘c’, 2 represent ‘x’, 3 represent ‘f’, 4 represent ‘k’, 5

represent ‘s’.

2.2 Normalization methods

However, most of the data features need to normalization. The pre-processing data will

affect the result of training model. Kuźniar and Zając 2 pointed out some methods of

data pre-processing for neural networks.

Next, comparing impact of these data pre-processing method in same neural

networks.

i. keep origin: no normalization.

ii. scaling to the interval (0.1 − 0.9):

𝑥 =
0.9𝑥∙(𝑥−𝑥𝑚𝑖𝑛)−0.1∙(𝑥−𝑥𝑚𝑎𝑥)

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 (1)

iii. dividing by the range of data

𝑥 =
𝑥

𝑑𝑎𝑡𝑎_𝑠𝑖𝑧𝑒
 (2)

iv. using polynomial functions

𝑥 = 𝑥𝛼 (ℎ𝑒𝑟𝑒 𝑐ℎ𝑜𝑜𝑠𝑒 𝛼 = 3) (3)

v. using exponential functions

𝑥 = 𝑒𝛼𝑥 (ℎ𝑒𝑟𝑒 𝑐ℎ𝑜𝑜𝑠𝑒 𝛼 = 3) (4)

3

Fig. 1. After 10 times of running test for each normalization functions. This graph shows the

mean of 10 times evaluation loss in each normalization functions. The red line represents the

origin function, blue line represent the scaling function (math formula 1) and so on. The loss

becomes to small when training more data.

Fig. 2. After 10 times of running test for each normalization functions. This graph shows the

mean of 10 times evaluation accuracy rate in each normalization functions. The accuracy rate

becomes to greater when training more data.

In this classify problem, from the result figures above, it looks like there are little

difference between each normalization methods. So, in this problem, decide this later.

4

3 Implement a neural network

Building a simple neural network first with the Sigmoid activation function, and the

optimizer using SGD. However, the result is not quite good when using a very simple

neural network.

Now improving the neural network to get a better training result. There are 2

things important in basic neural network, activation function and the optimizer. There

are many choices for activation function, not only Sigmoid function. Moreover, we can

use tanh function or rectified linear units (ReLUs) for the hidden layers, especially Relu

is popular in deep learning networks nowadays. From now on, there are many improved

gradient algorithm used in network optimizer, like Momentum, AdaGrad, RMSProp

and Adam, etc.

3.1 Activation function

Using sigmoid as an activation function has the following problems:

i. Gradient saturation. When the function activation value is close to 0 or 1, the

gradient of the function is close to zero. In the back-propagation calculation gradient,

each residual is close to 0, and the calculated gradient is also close to zero.

ii. The convergence speed of the parameters is very slow, which will affect the

training speed. Even if it is a good function for logistic regression, it was rarely used in

neural networks.

The tanh function, which is similar with sigmoid function, also has gradient

saturation problems. But in some cases, it performance better than sigmoid function, it

also will lead a result in low training speed sometimes.

The advantages of the Relu activation function compare to sigmoid and tanh

functions are:

i. The gradient is not saturated. So, in the process of back propagation, it could

reduce the situation of gradient disappear. Moreover, the parameters of the first few

layers of the neural network can be quickly updated.

ii. The calculation speed is fast. In the forward propagation process, the sigmoid

and tanh functions exist exponent which will take more time when calculate, while the

Relu function only needs to check the threshold which is simple and fast.

 SoftMax function is a good function for logistic regression, however it is usually

used for the last output layer, it is usually give the probability. So, it is not a traditional

activation function.

5

Fig. 3. After 10 times of running test for each normalization functions. This graph shows the

mean of 10 times evaluation accuracy rate in each activation functions. The accuracy rate

becomes to greater when training more data. Only Relu and log sigmoid activation function

performance better, could finally reach 90+ percent in training accuracy rate.

Fig. 4. This graph similar with figure.3. shows the mean of 10 times evaluation accuracy rate in

each activation functions, but changed the gradient algorithm. The accuracy rate grows much

faster when training more data. Most of activation function could finally reach a better result.

Choosing a proper activation function is very important, even if using a high level

gradient algorithm, lots of activation function could finally reach a better result, but

when selecting a proper activation function could save training time for big dataset

problems. The convergence of network is one of evaluation standard, it reflects the

6

performance of this network model, when choosing an activation function, need to

consider the convergence of this function for specific problems.

3.2 Optimize – gradient algorithm

The optimizer in a neural network also is very important, it related to the speed of

gradient, also influence the convergence of network. As Dublin3 stated that gradient

descent is an important part of algorithms to optimize neural networks. There are many

optimizer algorithms.

i. Stochastic gradient descent:

The original gradient algorithm is Stochastic Gradient Descent (SGD), it is very

traditional, however the gradient speed is quite slow, which will impact the result of

training in limit time. The process of SGD is train each parameter one by one, and

update the parameters w (dx here is the gradient):

𝑤 = 𝑤 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 ∗ 𝑑𝑥 (5)

ii. Momentum:

Momentum is an algorithm improved from SGD, add a momentum in it to helps

accelerate SGD gradient speed:

𝑤 = 𝑤 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 ∗ 𝑑𝑥 + 𝑏1 ∗ 𝑚 (6)

iii. AdaGrad:

Another advanced algorithm is AdaGrad, add force of friction in it to make gradient

speed faster.

𝑣 = 𝑣 + 𝑑𝑥2 (7)

𝑤 = 𝑤 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 ∗ 𝑑𝑥/√𝑣 (8)

iv. RMSProp:

Combine Momentum and AdaGrad, comes with RMSProp, but in this algorithm some

part of Momentum missed.

𝑣 = 𝑏1 ∗ 𝑣 + (1 − 𝑏1)𝑑𝑥2 (9)

𝑤 = 𝑤 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 ∗ 𝑑𝑥/√𝑣 (10)

v. Adam

Adam is an improve algorithm from RMSProp, also combined both Momentum and

AdaGrad, this method is trying to add the missed part of Momentum in RMSProp:

𝑤 = 𝑤 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 ∗ 𝑚 √𝑣⁄ (11)

where Momentum part:

 𝑚 = 𝑏1 ∗ 𝑚 + (1 − 𝑏1) ∗ 𝑑𝑥 (12)

and AdaGrad part:

 𝑣 = 𝑏2 ∗ 𝑣 + (1 − 𝑏2)𝑑𝑥2 (13)

7

Using same simple network model, the activation function chooses Relu function.

Next, only changing the optimizer algorithms. The figure 5 and figure 6 show an

intuitive comparison of several optimize algorithms.

Fig. 5. After 10 times of running test for each gradient algorithm. This graph shows the mean of

10 times evaluation accuracy rate in each gradient algorithm. The accuracy rate becomes to

greater when training more data. Only Adam gradient algorithm have a better training result,

which could reach nearly 100 percent in training dataset accuracy rate very fast.

8

Fig. 6. This graph similar with figure.5. shows the mean of 10 times evaluation accuracy rate in

each gradient algorithm, but changed the activation function to tanh. The accuracy rate grows

much slower when using SGD and Momentum.

Choosing a better gradient algorithm is equally important, by using a proper

activation function and an improved gradient algorithm, the convergence of network

will be better. This will have a great reflects on the performance of this network model

when training large dataset or pictures.

Above all, in using basic feedforward neural network by using error back

propagation algorithm, improving the neural network by using Relu activation function

and Adam gradient algorithm. And preprocessing dataset by using polynomial function.

All these methods improved the training accuracy of this logistic regression problem.

3.3 Evaluate

All analyses above are related to the Convergence evaluation of network model.

These convergence evaluations based on checking then training dataset accuracy rate

and loss.

Next, evaluating the normalization ability of this network model. Generalization

ability is used to evaluate how this trained model works for fresh samples. A good

trained model should with higher normalization ability, which usually used to predict

new samples. In this training dataset, separating the dataset in two parts, one part with

3/4 dataset is used for training model, and the other 1/4 dataset is used for testing the

normalization ability of model. The method is very simple: predicating the result of test

data features and compare with true label values, and calculate the accuracy rate of this

predict:

𝑎𝑐𝑐𝑢𝑎𝑟𝑐𝑦_𝑟𝑎𝑡𝑒 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑠

𝑡𝑒𝑠𝑡_𝑑𝑎𝑡𝑎𝑠𝑒𝑡_𝑠𝑖𝑧𝑒
 (14)

 The network model is defined now, which is quite good with a perfect

convergence ability in training accuracy rate, using this to evaluate the testing accuracy

rate which could directly reflect the normalization ability. Here continues the first part,

comparing different normalization data method.

Table 1. Shows the data of testing accuracy rate of using different normalization data method

Normalization method Best of accuracy rate Mean of accuracy rate

Keep origin 82.67% 81.52%

Scaling to interval 93.31% 92.62%

Dividing by range 92.71% 92.47%

using polynomial 82.13% 79.39%

using exponential 77.71% 73.58%

9

4 Continue Improving Neural Network Model

4.1 Algorithm

In the process of human cognition, human have the ability to collect effects and get

result of consequences, and also, they could use the consequences to find out the effects.

Using this characteristic to build the neural network model similarly. So Gedeon4

proposed an algorithm named “Shared Weights and Bidirectional Networks”, which is

using this idea.

The neural network model only has one hidden layer, the weight between layers

has a symmetry. The first part is Positive Neural Network, a classical feedforward

neural network with a hidden layer, use to learn like from effects to find out

consequences. Each input vector 𝑥 = [𝑥1, … , 𝑥𝑖]𝑇 ∈ 𝑅𝑖×1, where 𝑖 is the number of

input neurons, and the output is also a vector 𝑦̂ = [𝑦̂1, … , 𝑦̂𝑜]𝑇 ∈ 𝑅𝑜×1, where 𝑜 is the

number of output neurons. So, the weight matrix in connection between input layer and

hidden layer is 𝑊𝑝1 ∈ 𝑅𝑝×𝑟 where ℎ is the number of hidden neurons. And the

weight matrix in connection between hidden layer and output layer is 𝑊𝑝2 ∈ 𝑅𝑜×𝑝.

The second part is Negative Neural Network, use to learn like from consequences to

find out effects. Input vector is 𝑦 = [𝑦1, … , 𝑦𝑜]𝑇 ∈ 𝑅𝑜×1, where 𝑜 is the number of

input neurons, output vector 𝑥̂ = [𝑥̂1, … , 𝑥̂𝑟]𝑇 ∈ 𝑅𝑟×1 and 𝑟 is the number of output

neurons, and the weight matrix 𝑊𝑛1 ∈ 𝑅𝑝×𝑜 and 𝑊𝑛2 ∈ 𝑅𝑟×𝑝, similar with first part

above, but symmetry. Next, shared the weight in Positive Neural Network and Negative

Neural Network, so we have:

𝑊𝑝1 = 𝑊𝑛2
𝑇 ∈ 𝑅𝑝×𝑟 , 𝑊𝑝2 = 𝑊𝑛1

𝑇 ∈ 𝑅𝑜×𝑝 (15)

4.2 Analysis the advantage of this network model

i. Convergence:

The Positive Neural Network part is same with feedforward neural network by using

error back propagation. So, in the Positive Neural Network part, the convergence is

quite good by using improve gradient and use proper activation function. The

convergence of Negative Neural Network is a bit faster but very similar with Positive

Neural Network.

ii. Generalization:

From the result of using this method, it indeed improves the generalization ability of

this network model. This method is effective in preventing over-fitting and enhancing

the network generalization ability.

4.3 Compare to traditional machine learning method

Incremental Hill-Climbing Search Applied to Bayesian Network Structure Learning7

The ‘Mushroom dataset is generally the most difficult to learn incrementally in the

sense that incremental algorithms obtain the lowest time gain.’ The neural network

10

could handle some hard problems, while using machine learning mathematic method is

hard to train them.

5 Conclusion and future research

4.1 Conclusion

Through this research, I have a deep understanding in building a network model to train

dataset and find some methods to improve the training result.

i. proper preprocessing raw data;

ii. choose a proper activation function;

iii. using an improved optimize gradient algorithm to make the network convergence;

iv. using other improved network design algorithm, like Shared Weights and

Bidirectional Networks5 to avoid overfitting problem.

Neural network model is quite useful new technique for training dataset, it could

solve wild range of problems, the core task is find the proper neural parameter matrix.

4.2 Future research

As in the data description, it mentioned some research from others, as some data missed

in feature ‘stalk-root’, this feature need to add some more constrain on it. Also, the

network model could be improved by adding more layer with some logic relationship

between different layer mentioned in data description. Moreover, the learning rate also

impact the convergence of network, maybe it will be convergence faster with an auto

adjust learning rate method.

Acknowledgments

Thanks to professor T. D. Gedeon and tutor Jo Plested.

References

[1] Mushroom Data Set, https://archive.ics.uci.edu/ml/datasets/mushroom

[2] Krystyna, K., Maciej, Z., Some methods of pre-processing input data for neural networks.

Computer Assisted Methods in Engineering and Science, 22: 141–151, 2015.

[3] Aylien, L.D., An overview of gradient descent optimization algorithms, 2017.

 [4] Gedeon, T. D., Catalan, J.A., Jin, J., Image Compression using Shared Weights and

Bidirectional Networks.

[5] Josep, R.A.,Incremental Hill-Climbing Search Applied to Bayesian Network Structure

Learning

https://archive.ics.uci.edu/ml/datasets/mushroom

