
 Bayesian Approach to Deep Learning

 Abhishek K. Singh

 u6411540@anu.edu.au

Abstract. The optimization of weights in a traditional Neural Network is driven by the, fairly obvious, intention of

reducing the error in prediction. This can be visualized as an application of the Maximum Likelihood Estimation for

weights estimation. While the point estimates prove good in dealing with certain complex situations [1]., the arguments

of why using a frequentist approach still remains. In this paper we use a Bayesian approach to Neural network and a

traditional deep learning neural network on a dataset and prove why Bayesian might be a better choice in certain

conditions.

Keywords: Deep Learning, Bayesian Neural Network, Posterior Distributions

1 Introduction

Neural networks are revolutionary tools in machine learning which are based on the concept of learning by optimizing

the Gradient Descent through back propagation. Gradient descent on its part, generally attributed to Augustine- Louis

Cauchy, had been well discussed to minimize error in the parametric space of complex, nonlinear, differentiable, multi-

stage, NN-related system in the 1960s [2]. It is no wonder hence, for it to be tried at the first for error minimization, as a

natural choice by researchers working in developing an ANN. However, if we dive slightly deep into how we have been

treating our traditional ANN or DNN, we might be tempted to say that it is indeed a frequentist approach! There is nothing

wrong with it but it implicitly [3] calls for a Bayesian treatment of the same.

In this paper, we will continue [1] our analysis on the forest cover Data which would be implemented on a Traditional

DNN and a Bayesian Based DNN (also called as BNN) and compare the results of both with the results of an existing

research paper [4]. It is to be noted that we would be using the same methodology [6], for data pre- processing in both the

cases and hence the data fed into the function for both the cases would be same.

1.1 Why Bayesian?

Suppose we are watching a game of football. The scores are 6-0 and we are in the final minute of the game. And we see

the climax: The losing team scores a goal each on 89 minutes 10 seconds, 89 minutes 20 seconds, 89 minutes 30 seconds.

We can also add here is that in all the goals, the touch of a certain player is involved. Would our mind infer, that because

the scoring rate in the last minute has been a goal every 10 seconds, so we will have 3 mores goals in the final 30 seconds

given ‘that’ certain player has the ball? And hence the final score would be 6-6 indeed? The realistic answer is a No, our

mind won’t. The reason is that our mind is guided by “prior beliefs”. These beliefs would most likely reinforce our mind

with the thought that the 3 goals that were just scored were indeed due to divine momentary luck, but it is difficult to

believe that it would be carried to through the remaining length of the game as well. An article [5] published in the Current

Biology focusses on how the brain makes the decisions. It throws emphasis on the decision making of the brain which is

influenced by the prior beliefs of an individual. Hence while replicating a machine version of the brain, it becomes

necessary to incorporate the prior beliefs.

The Neural networks we have been dealing with till now lacks this “belief” factor. It is true that we can introduce an L2

regularization factor and sort of give a belief to the network. But this might not be the most appropriate way given we

have a plausible Bayesian approach. Further it is reasonable to involve the beliefs somehow because in certain situations

a neural network might fail straight away. An easy to look example would be to predict whether a person is atheist or a

believer whether he has seen the god or not.

Further Bayesian Neural Networks are sort of imbibed with natural Regularization properties. As we shall see later, this

helps them to avoid overfit the data and are particularly helpful in the cases when the distribution of the output class is

highly biased towards certain classes. When compared the with the results of the DNN (to be followed soon) and the

ANN approach [2], the BNN outperformed both of them reasonably.

 1.2 Neural Network as a Frequentist Approach

One interpretation, in the nutshell, might be that the difference between the frequentist and the Bayesian approach is the

belief. The frequentist belief is close to truly predictable and the uncertainty in prediction of the future events can hence

be attributed to the lack of sampling data. While in Bayesian, we have prior beliefs which shapes are decision in a way.

One of the most popular frequentist technique in parameter estimation is the MLE or the Maximum Likelihood

Estimation. In the maximum likelihood approach, the parameters are estimated such that the value of a given likelihood

function is maximized. Mathematically this can be written as:

 Φ ϵ {arg max Ϗ(θ ; x)} (1)

where Φ is the estimate of θ and Ϗ is the likelihood function. So, our estimate of θ would be something that maximizes

the function Ϗ.

Now consider, if we have in general a data with

1.) Number of instances represented as N

2.) Target/output variable represented by y and

3.) Input variable represented by x, where x the given d – dimensional vector.

Extending the above notation for y and x to a complete set, we write Y and X respectively. Now assuming1 y to have a

Normal Distribution with its mean being dependent on x and ɷ, we can write

 𝑃(𝑦𝑖| (𝑥𝑖 , ɷ)) = Ɲ((𝑥𝑖 , ɷ), 𝜎2) (2)

(to be noted here is that the equation on the R.H.S is not written in conditional form just for simplicity and to emphasize

that we are not going to expand the R.H.S by the conditional – multiplicative rule of Probability, rather the Normal

Distribution is the destination.)

Now the corresponding likelihood function would be: (Iterating over all the elements.)

 𝑃(𝑦𝑖| (𝑥𝑖 , ɷ)) = ∏ Ɲ((𝑥𝑖 , ɷ), 𝜎2)𝑁
1 (3)

Taking the negative logarithm and adding (in the last step) from 1 to N, we get, for the R.H.S

= − ln (
1

(𝜎×√(2𝜋)
× 𝑒

−(
𝑦−(𝑥𝑖,ɷ)

𝜎2)
2

)

= −𝑙𝑛
1

(𝜎×√(2𝜋)
+ (

𝑦−(𝑥𝑖,ɷ)

𝜎2)
2

= 𝑁 × 𝑙𝑛𝜎 + 𝑁 × ln√(2𝜋) + 𝑁 × (
𝑦−(𝑥𝑖,ɷ)

𝜎2)
2

 (4)

Now the last term can be visualized as the Mean squared error! Recall, that we took the negative logarithm on both the

sides, this means for the L.H.S to increase R.H.S must decrease; hence we should have a small Mean – Squared error.

So, the idea is that talking about minimizing the mean squared error is the other way of saying: Maximizing the likelihood

estimator or a frequentist approach to the neural Networks. It might be argued that if we take the cross – entropy function

to visualize the error, then the approach should not be termed a frequentist. This is however not true, recall that we

assumed that y had a gaussian distribution and with more general case2, we can establish that cross entropy error can also

be visualized as an MLE approach.

2 Bayesian Approach to Neural Network

The Bayesian inference in this case gets complex in its mathematics although its representation in its most raw form is

easy to understand. The way a Bayesian Neural network works is based on MAP - Maximum A Priori. In the text to

follow forward, we would be using quite a few terminologies which form the basis of our discussion. The full Bayesian

treatment for the weight estimation requires some descent amount of mathematics which is not covered here to entirety

and would require to introduce a lot of new terms. It is thus tried, that the use of mathematics be limited to the bare

essential.

1 The generalized case where y does not need to be a Gaussian is also possible, just for simplicity it is avoided here.
2 See “Pattern Recognition and Machine Learning”- Christopher M. Bishop, does not cover the case exclusively, but provides a good

background for investigation. Pg. 278 -282.

Bayes’ theorem and the terminologies associated:

The conditional probability of an event Xi with respect to the outcome of an event Y is given as:

 𝑃 (
𝑋𝑖

𝑌
) =

𝑝(
𝑌

𝑋𝑖
)×𝑃(𝑋𝑖)

𝑃(𝑌)
 (5)

Where:

𝑃 (
𝑋𝑖

𝑌
) is called the Posterior Distribution.

𝑃(𝑋𝑖) is the Prior Belief / A Priori

𝑃 (
𝑌

𝑋𝑖
) is called the class conditional Probability.

Now in the BNN (Bayesian Neural Network), weights are modelled as conditioned upon both the Input Training Data

and the Classification output. Also “it makes use of the posterior inference of the weight, along with the weights”, to make

predictions about class 𝑦𝑖 corresponding to a given 𝑥𝑖. So, this makes the weights to be given as (Using the Bayes theorem

equation 5):

 𝑃(ɷ/(𝐗𝑇𝑟𝑎𝑖𝑛 , 𝑌𝑇𝑟𝑎𝑖𝑛)) =
𝑃(𝑌𝑇𝑟𝑎𝑖𝑛|𝑋𝑇𝑟𝑎𝑖𝑛 , ɷ)×𝑃(ɷ)

𝑍
 (6)

Where:

Z = Normalization Constant

P(ɷ) = Prior/Prior Belief/ A priori

𝑃 (𝑌𝑇𝑟𝑎𝑖𝑛│𝑋𝑇𝑟𝑎𝑖𝑛 , ɷ) = Likelihood Function

The likelihood distribution can be evaluated by various methods (both parametric and Non-Parametric). The way it is

calculated in the Edward Library3, used to implement Bayesian Neural Network on python, is based on Gibbs sampling

which is the subset of the larger Markov Chain Monte Carlo Methods.

Next, we estimate the value of occurrence of a general class 𝑦i for a given 𝑥i marginalized over the weight ɷ This can be

written as:

 ∫ 𝑃(𝑦|(𝑥, ɷ) × 𝑃(ɷ|𝑌𝑇𝑟𝑎𝑖𝑛 , 𝑋𝑇𝑟𝑎𝑖𝑛) 𝑑ɷ (7)

An intuition to this equation can be thought of as follows:

To estimate an unknown, the neural network would estimate the probability of occurrence of that unknown by using all

possible weights, which would be multiplied by the probability of occurrence of such weights. So, this means, that while

summing over the weights, we might expect that a highly unlikely weight would be offset by its low probability of

occurrence.

To evaluate this integral, we first divide the data into small batch sizes and then infer the conditional Probability for the

weights. We then multiply the above obtained density function with the output of an ANN 𝑃(𝑦|(𝑥, ɷ) and evaluate the

integral which is our final output. The process of evaluating the inference 𝑃(ɷ|𝑌𝑇𝑟𝑎𝑖𝑛 , 𝑋𝑇𝑟𝑎𝑖𝑛) is now done with these

new weights and the cycle is repeated till the required epochs.

The M.A.P in turn can be thought of as the general case, whose subset is the MLE when the distribution of the weights is

uniform.

2.2 Moving from ANN to DNN

DNNs are powerful classifiers which are capable of creating nonlinear decision boundaries around the data points. This

makes them also prone to overfitting. In the analysis to follow, we implement a DNN with 2 hidden layers over the forest

cover data. Here we continue our Analysis on the same lines as before, we use selective sampling [1] and pre- process the

data as per done in the paper [5].

3 More about it can be read in the ReadMe.txt

3 Method

3.1 Data Set Information

For this analysis, we modelled a real data set, which contained information associated with 7 types of forest convertype.

This data was collected by USFS and the link to this data on the UCI website can be found in reference. This data consisted

of 54 attributes for each of the covertype class. Of these 54 variables 10 were quantitative variable, 4 binary and 40 for

each of the 40-soil type. (1 signifies presence, 0 the opposite). The technique used for prediction is DNN and BNN which

has been implemented on Python. The data has been pre- process following the techniques used in a certain paper[6].

3.2 Overview of the Raw Data

Below is the distribution of output data4. The percentage distribution of the output variable in the data is:

 Fig.1. % Distribution of forest cover type

From the histogram, it can be seen that the top 2 most frequently occuring class have the total occurrence of more then

80%, combined together. As such this data is highly biased in the forest types Spruce- Fir , and Lodgepole Pine.

3.3 Data Processing :

Here we use a simple paramteric outlier removal technique for near similar gaussian distributions. From statistics we

know that 99.73% of the data in a normal distribution is with 3 standard deviations from the mean. Keeping this , in

mind, the values above or below 3 standard devations have been replaced with the mean. This technique has been applied

to the the following variables :

1.) Elevation

2.) Slope

3.) Hillshade_9Am

4.) HillShade_noon

5.) Hillshade_3pm

6.) Horizontal_Distance_to_fire_points

4 The distribution of the other variables have been covered previously (refer to 1 in reference) and hence not been added here to avoid

redundancy.

3.3a Variable Grouping

Aspect

The attribute Aspect has been coded to remove the problem of continuity [6] . Post its bucketing , its statistical significance

in predicting the output through a logistic model has been found to be fairy high. To code the aspect values , the values

are classified into 8 directions North , North-East , East and so on.

Soil Types:

The information about the different soil types is fairly staraight forward, as obtained from the UCI website. The 40

subclasses of the soil type can be merged into 8 broad soil types .The need to do it arose from the very unsymemetric

distribution of some of the soil stypes.

3.3b Normalising quanitiative variables

The quantitative variables : Elevation , Horizontal distance to hydrology, Horizontal Distance to roadways, Hillshade (all

possible values) have been normalised , this is in line with the recommended practices.[7]

3.4 Initial Observations

The brute application of neural network on raw data gave an acurracy of ~52% on the Training Data and ~48% on the

testing data.

A variable reduction technique was used subsequently which was based on the t-scores obtained while this data was run

on a logistic regression model on R .In simple logistic regression, the output is modelled to the input variables , by a linear

equation of the form :

𝑦 = 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 + ⋯ + 𝑎𝑛𝑥𝑛 (8)

The general logistic regression model gives an output of z scores and the corresponding probabilty for all the input

attributes xi.The probability , in this case , is the probability that the null Hypothesis : ai = 0 , is true. Or the other way of

saying this – it is the probabilty that the input variable is not significant . So , lower the probability means , the input

variable is , in fact significant.

The t scores and the corresponding p-values when run on the processed are shown for the insignificant variables

Table 1 .Result for variable significance

Coefficients t- value 𝑃(> 𝑡)

Vertical_Distance 0.36 0.72

East 0.53 0.59

South East 0.69 0.59

North West 0.18 0.62

Mo. Sandstone 1.8 0.76

With the above result, the respective columns were removed from the data set and this gave the final processed data on

which all the analysis has been done. The data was divided into training and testing samples in the ratio of 7: 3

At the first , the model was run on this processed training data using the DNN and the BNN . The results of the DNN

showed a flaw in model learning because of the high biasing in the output data. The model failed to learn to predict 4 out

of the 7 variables which had the least frequncy of occurene. Although the model gave accuracy of more than 50% which

can be attributed to the fact that more then 50 % of the testing data was dominated by the 1st – 3 forest covertype and the

model predicted one of those 3 covertype for every set of input variable. The confusion matrix of the model looks like

as follows:

Table 2. Percentage correct vaule detected with DNN

Spruce-Fir Loge.pin Pond.Pin Cottonwood Apen Doug.Fir Krummhol

2.17 97.82 0.47 0.00 0.00 0.00 0.00

0.16 99.65 0.19 0.00 0.00 0.00 0.00

0.00 91.34 8.66 0.00 0.00 0.00 0.00

0.00 92.86 7.14 0.00 0.00 0.00 0.00

0.00 100.0 0.00 0.00 0.00 0.00 0.00

0.00 92.06 7.94 0.00 0.00 0.00 0.00

14.55 85.41 0.03 0.00 0.00 0.00 0.00

Now comparing the results with the ANN model [1] , we get very similar results , with the model accuracy in predicting

4 of the 7 variables is 0% upto 2 decimal places.

The same data was run on a Bayesian Neural Netork which gave an accuracy of ~54% on the Training set ans ~48-50%

on the Test set . Investigating further, we realised that the predictions were relatively unbiased, as hypothesized earlier .

Following has been the confusion matrix of the BNN.

Table 3. Percentage correct vaule detected with BNN

Spruce-Fir Loge.pin Pond.Pin Cottonwood Apen Doug.Fir Krummhol

53.28 45.63 0.77 0.00 0.00 0.01 0.25

45.00 39.40 12.45 0.27 0.23 0.13 2.50

15.76 10.22 70.45 0.66 0.50 0.19 2.18

Rest.5 Rest. Rest. Rest. Rest. Rest. Rest.

31.65 46.97 20.46 0.00 0.00 0.00 0.91

26.02 33.55 20.98 2.66 1.57 1.63 13.57

64.25 35.01 0.73 0.00 0.00 0.00 0.01

It can be clearly seen that BNN is less biased than the DNN.. It would have been very intereseting to see the even better

prediction that the BNN could have provided6 with the selective sampling , explained in the following sections.

5 There is no data for the Cottonwood class because it just so happened that all of the Observations with CottonWood class fell under

the Training Set while we did the sampling.It is to be noted that the total no of observations in the data set was nearly 500000 while

the Cottonwood class had 2747 appearences
6 The further analysis with the Bayesian Networks could not be done , one of the following reasons is mentioned in the ReadMe file.

3.5 Selective Sampling

Referring to Figure1 , we have previously talked about the biasness in the data.With selective sampling we aim to reduce

the biasnees in the data . To do this , we create 3 different set of Training- Testing Data as follows. Data as follows(In

tall the 3 cases the Testing would be simply the compliment.)

Data is randomly selected in pre – decided proportions of the various output classes to obtain a less skewed output class.

These predecided proportions can be looked in the sample code provided. Below we give , how the 3 distributions look

graphically with there results in the results section.

4 Results

4a Sample1

The Data Distribution obtained throught the Selective sampling is as follows :

Fig.2. % Distribution of forest cover type, after doing Sampling1

With this data we achieved an accuray of ~55% on the Training data and ~58% on the Testing data. The confusion matrix

in this case looks like :

Table 4. Percentage correct vaule detected with DNN , using 1st kind of sampling

Spruce-Fir Loge.pin Pond.Pin Cottonwood Apen Doug.Fir Krummhol

82.22 10.23 0.08 0.00 0.00 0.02 7.45

58.24 37.95 2.64 0.00 0.00 0.81 0.37

0.43 0.70 98.39 0.00 0.00 0.48 0.00

10.05 3.20 83.95 0.00 0.00 2.80 0.00

22.67 68.66 7.54 0.00 0.00 1.13 0.00

12.90 22.85 53.43 0.00 0.00 10.83 0.00

23.41 0.36 0.39 0.00 0.00 0.00 75.84

It can be seen that post removing the bias of the data , the DNN model has performed better then it did in the previous

case. Comparing the results with the ANN model of the paper [cite your paper] , the model has made significant

improvement for the same case.

4b Sample2

The Data Distribution obtained throught the Selective sampling is as follows :

 Fig.6. % Distribution of Data

The results in this case turns out to an improved accuacy of ~57% on the Trainset and an accuracy of about ~50% on the

TestSet. The confusion matrix in this case turns out to be :

Table 4. Percentage correct vaule detected with DNN , using 1st kind of sampling

Spruce-Fir Loge.pin Pond.Pin Cottonwood Apen Doug.Fir Krummhol

45.03 5.83 35.12 0.00 0.00 0.25 13.79

16.60 52.37 27.98 0.00 0.00 2.66 0.39

0.02 1.33 90.33 0.00 0.00 8.32 0.00

0.00 7.10 90.75 0.00 0.00 2.15 0.00

4.69 50.14 40.43 0.00 0.00 4.74 0.00

1.72 5.49 74.09 0.00 0.00 18.70 0.00

7.62 11.11 6.01 0.00 0.00 0.00 75.25

Theoretically this model has been slightly inferior then the previous one, but in practice it might turn out to be more

efficient as it has clearly lesser number of false positives and it predicts all the classes better then before,except for one

class. We skip here the 3rd model which had near similar details. Further while comparing the results[4] with an existing

paper, we find that results are similar in terms of which covertype has been predicted with good accuracy.The overall

results of the paper[4] , has been 70% which is much more then we could produce. This can be attributed to many reasons

which might include, but not limited to , number of points on which data was tested . This can be a goo reason because

in our case, a low training and low testing has done better in trial runs. But this case was avoided, because it involved a

lot of information loss. The takeaways are that with good data pre – processing and selective sampling we cas still make

the neural networks predict well.

4 Conclusions

The DNN , as compared to the ANN, was able to handle a biased data slightly well .The results further confirmed that the

biological inspiration of the Neural Network would be incomplete without encluding the beliefs . We saw that the BNN

showed potential and capacity to learn promising on one such data . However if the data is fairly well distributed then the

DNNs might offer better prospects in terms of reducing the computational complexity. Further , there are not much

resources avaible as of now to utilise variational inferences. The one such used here is derived from the edward library7,

which has its own issues relating to it. It thus becomes very important to be pro – fluent in a language like python to

implement ideas in a customised library.

5 Future Work

There is a great potential in utilisng the different distributions as seen in fields as distant as quantum physics and nuclear

engineering.It would be interesting to introduce weight decay like the one in nuclean engineering , to the DNN or BNN

weights after a certain life cycle of learning based on certain conditions. As discussed in the paper, Gibbs sampling is

ones such way of dealing with the calculation of class conditional probablities. It would be interesting to see how the

other MCMCM works .The author in the immeditate future, plans to work on specific optimisation techiniques specific

to the problem of machine vision. While the data set in hand might differ but a yet another way of looking at things, that

we have used in this paper and the previous would be of importance to consider.

7 More about it in the code files

References

 [1] A. Singh, "Bias Handling in ANN with comparison to a Bayesian Based classifier", Assignment, Australian National

University, 2018.

[2] J. Schmidhuber, "Who Invented Backpropagation?", People.idsia.ch, 2018. [Online]. Available:

http://people.idsia.ch/~juergen/who-invented-backpropagation.html. [Accessed: 28- May- 2018].

[3]. M. Nisen, "Why People Often Do The Exact Opposite Of What They're Told", Business Insider Australia, 2018.

[Online]. Available: https://www.businessinsider.com.au/why-people-dont-follow-directions-2013-8. [Accessed: 28-

May- 2018]

[4] J. Blackard and D. Dean, "Comparative accuracies of artificial neural networks and discriminant analysis in predicting

forest cover types from cartographic variables", Computers and Electronics in Agriculture, vol. 24, no. 3, pp. 131-151,

1999.

[5] M. d'Acremont and P. Bossaerts, "Decision Making: How the Brain Weighs the Evidence", Current Biology, vol. 22,

no. 18, pp. R808-R810, 2012

[6] R. Bustos and T. Gedeon, "Decrypting Neural Network Data: A GIS case study", Artificial Neural Nets and Genetic

Algorithms, pp. 231-234, 1995.

[7] M. Rafiq, G. Bugmann and D. Easterbrook, "Neural network design for engineering applications", Computers &

Structures, vol. 79, no. 17, pp. 1541-1552, 2001.

