
Predicting Absenteeism At Work using ANN, Effects of
Pruning By Badness, and Deep NNs

Aditya Sinha

Research School of Computer Science

College of Engineering and Computer Science

Australian National University

ACT 0200 Australia

u6010425@anu.edu.au

Abstract. Feed forward networks that train using back-propagation have been
a much discussed subject in industry and research. Such networks facilitate
systems that given the right type (and size) of data, predict results or classify
objects with relative ease.

One common complaint with such systems has been the following - there
seems to be no reliable way of knowing in advance, the number of hidden layer
neurons needed for optimum functioning of the network. And often,
satisfactory results are obtained after overestimating this number, in which
case, the system can be made more efficient if these neurons are pruned. This
paper studies the effects of one such pruning strategy: pruning by Badness
factor.

Our network predicts absenteeism at work using factors such as employee
weight, height, BMI, distance from workplace, prior record of social
smoking/drinking and so on. We do this by training our network on a record of
employee absenteeism from a courier company in Brazil. The ANN classifies
the absenteeism into one of three categories, and we assess the accuracy of the
system using various means. Then we prune one of the excessive nodes, and
re-evaluate our system’s accuracy. While accuracy is seen to marginally
improve in 60% of the cases, it stays the same in 10% of the runs and decreases
in the remaining 30%. Pruning by badness is found to be a not too reliable
strategy for reducing extra neurons. The paper also discusses the application of
Deep Neural Networks to the same problem, although the implementation ends
up not working.

Keywords: ​Artificial Neural Networks, Pruning, Badness, Deep Neural
Networks

1 Introduction

Absenteeism is the absence of an employee from their workplace. Predicting the
extent and frequency of the absenteeism of employees can be beneficial to companies

and organisations in terms of productivity and cost.

We worked with the Absenteeism at work data set from the UC Irvine Machine
Learning Repository. It contains 21 attributes, one of them being absenteeism in
hours. The 740 instances present in the dataset are sufficient to train and test a neural
network that predicts the absenteeism of a given employee by looking at their data.
The dataset is a record of employee absenteeism from a courier company in Brazil. It
is well organised and has no missing values. The aforementioned reasons make the
dataset suitable for our task. The last attribute in the table was the Absenteeism time
in hours, this is what we aimed to predict. The other 20 attributes were: Individual
Identification (ID), Reason for absence (a categorical variable in numerical form, one
number denoting each of the 28 possible categories), Month of absence, Day of The
Week, Seasons, Transportation Expense, Distance from residence to work, Service
Time, Age, Work load Average/day, Hit target (achievement of periodic goals in
percentage), Disciplinary failure, Education, Son, Social Drinker, Social smoker, Pet,
Weight, Height and Body Mass Index. Although the dataset had the target attribute in
numerical value (hours of absenteeism), for a more comprehensive analysis of results,
it was decided that this was best turned into a classification problem. So the
absenteeism hours were divided into three classes. (More discussion about this in next
section). Once the neural network was ready and running, we analysed the results of
the test runs and worked on ways to improve the system. A simple neural network can
be improved in roughly two ways - the first being accuracy (in terms of its results),
the second being efficiency (in terms of number of hidden nodes, or time/training
taken to reach the results). We use pruning for this purpose and measure the results
primarily in terms of classification accuracy.

1.1 Badness

Badness factor for a hidden unit is the sum of back propagated error components over
all patterns [2]. So for a dataset with k number of patterns, the badness factor for each
node in layer n would be calculated by:

● Feeding the data forward pattern by pattern (1 to k).
● Finding the error component from each node in layer n+1 to each node in

layer n.
● Adding the above error components node-wise, so we have the net error for

each node in layer n.
● Storing these values and adding to them again and again, the node-wise error

components for each pattern.
● Once all k patterns have been iterated through, we find the absolute value of

these accumulated error components. These are the badness factors for each
node in layer n.

● We eliminate the node with the highest badness factor.

Although pruning by badness may be simple in approach, it’s arguable whether it’s a
good strategy or not. Removing the node with the highest badness factor is akin to
removing the node that has done the maximum amount of learning, and is an
approach susceptible to backfiring in terms of accuracy​.

1.2 Deep Neural Networks

A deep neural network is an artificial neural network with multiple hidden layers
between the input and output layers. It’s simply a ‘deeper’ feed forward network with
a greater number of hidden layers. There is no such agreed number of hidden layers
beyond which a network is considered to be deep, so the ‘depth’ is a rather soft
property. It is often argued that a simple neural network (with a single hidden layer)
with a finite number of hidden nodes can approximate almost any function, and can in
principle learn anything. However, deep neural networks have been seen performing
better for certain kinds of problems. The extra layers may enable composition of
features from lower layers, potentially modelling complex data with fewer nodes than
a similarly performing shallow network. DNNs have seen a massive surge in
popularity over the last five years.

2 Method

2.1 Preprocessing

Our first step was to make the data ready for use. This involved taking a look at the
dataset, and encoding and formatting the data for the best results. Because the
identification number of an employee did not play into their likelihood of absence,
this column was dropped. This left the table with one less attribute than it started with.
Next, we looked upon the attribute ‘Reason of absence’. Being a key causal factor in
the absence of employees, this was definitely an important attribute. Our first step
would be to convert the categories into numerical values. But fortunately, the dataset
already contains the categories in numerical form. But this would mean that a reason
corresponding to a high numerical value would affect the network more than the a
reason with lower value. But there was no such order in the importance of these
reasons. In order to make sure these numerical values did not affect our results, we
used one hot encoding.

One hot encoding transforms categorical attributes into a format that works better
with classification neural networks. This is done by representing each category with a
boolean attribute. The attribute is true only for rows which belong to the
corresponding category. For example:

ID Species Numerical value

1 Human 0

2 Tuna 1

3 Dog 2

4 Tuna 1

ID Human Tuna Dog

1 1 0 0

2 0 1 0

3 0 0 1

4 0 1 0

Once this is done, all input nodes corresponding to these categories carry the same
input value. Our next step was to normalise input data. Although it’s not compulsory,
normalising helps reach convergence faster. For all data in each column in the dataset
except the target attribute (Absenteeism time in hours), we subtracted the mean of the
column, and divided this difference by the standard deviation. This scaled down all
values to relatively small numbers in close range with each other, making it easier to
approach the global minima of the error function.

2.2 Splitting the data

Once the data has been encoded and normalised, we move onto our target attribute.
Because we’re making a classifier for the purpose of this task, we divide and encode
the target values into three categories:

● Less than or equal to 10 hours => 0
● Between 10 and 40 hours => 1
● Greater than 40 hours => 2

Other intervals were tried, but the results showed a lack of balance. Because a vast
majority of employees show an absence of less than 10 hours, these intervals were
chosen to allow as many entries as possible into the other two categories for better
balance. This was not made a binary classification because that would leave too much
to interpretation, reducing the utility of the system. For example: If we divided the
data into two classes on each side of a set point (say 60 hours), about 95% of the
entries would still fall to the left of 60 hours. Furthermore, this would categorise an
employee absent for 120 hours and a different employee absent for 61 hours in the
same class.

The dataset was shuffled and then randomly split 80:20 for training and testing sets.
Both these sets were further split into input and target values.

2.3 The neural network

The neural network was created using PyTorch. We PyTorch.nn module was
extended to make a simple two layer network. The number of nodes in the input layer
was equal to the final number of attributes after preprocessing (46 in total). There
were three output nodes one for each of the possible categories. There’s no set way to
determine an optimum number of hidden nodes for the hidden layer. In a good

number of cases, the number of hidden nodes is found to lie somewhere between the
number of input and output nodes. So for our network, we started with the mean of
the two. This is a simple feed forward back propagation neural net, so we used
sigmoid function with softmax.

2.4 Pruning

The next bit involves finding the badness factors for each node in the hidden layer,
and pruning the excessive ones. Although pruning by badness itself is a rather simple
approach, its implementation through pyTorch is deceptively tricky. The training
input is split into patterns to be fed forward into the network. It’s important that this
be done, since the forward() function in pyTorch does not work with a Tensor of less
than one dimensions. This means feeding the data row by row requires a different
(manual) approach, that would make the usage of pyTorch rather pointless, thus
eliminating that possibility.

Once these patterns are being fed, the net loss is calculated which is the total error of
the network for each pattern. This net loss is split into the hidden layer connections in
proportions of the weights that these connections have been assigned. This can either
be done by manual calculation or by accessing the gradient of the weight parameter.
The split error is stored in a one dimensional Tensor to be added to the next batch of
split errors from the next pattern. All these error components are accumulated while
iterating through the the patterns. Once this is finished, the node-wise stored error
components go through an abs() function to make sure we’re measuring the badness
regardless of the sign. The maximum of these values is the node with the maximum
accumulated error.

Although there are many ways to eliminate nodes, for simplicity’s sake in our study
we pruned by setting all connection weights of the desired node to zero. After this, the
requires_grad variable was set to False, making sure that the node weights would
undergo no further changes.

2.5 Deep Neural Network

The simple two layer network had a blind spot when training with instances of the
second and third categories. (This can be seen in the confusion matrices in the Results
section). Which is why, this part of the study, it was expected that a deeper network
with fewer nodes in each layer (and roughly the same number of hidden nodes in
total) would perform better classification, especially for instances which belong to the
second and third categories. The structure was built and connected using PyTorch’s
built-in torch.nn.Module. However, when feeding the data into this network, some
issues were encountered in the feed-forward function of this structure, which could
not be resolved in the given time-frame.

3 Results and discussion

The In the training set, the network showed an increasing accuracy over 5000 epochs
(increasing beyond 99% in the end). In the testing set, an accuracy of between 86 and
90 percent was observed.

Having known the skew in the target data, it’s very much possible that the high
accuracy was a result of a majority of data belonging to one class. In order to test for
this we used confusion matrices instead.

Table 1: Testing and training matrices

Confusion matrix for training:

 549 0 1
 5 33 0
 1 0 10

Confusion matrix for testing:

 124 3 0
 8 1 1
 2 1 1

Table 2: Testing matrices before and after pruning

Before:
Testing Accuracy: 90.14 %
Confusion matrix for testing:

 124 5 1
 6 3 1
 1 0 1

After:
Testing Accuracy: 91.55 %
Confusion matrix for testing:

 127 3 0
 7 2 1
 1 0 1

In case of pruning, the results were mixed. Out of 10 runs, 6 yielded marginally
increased accuracy. In 3, accuracy was lost, and in 1, there was no change. This is not
too surprising given that badness is not the most comprehensive metric for removing
excessive nodes. To remove the node with maximum errors also means to lose on a
huge chunk of the learning that the system has done so far.

4 Conclusion and future work

The performance of the system can be improved by tinkering with the number of
hidden neurons, number of epochs and learning rate. But even despite playing with
these variables, the system doesn’t do very well in classifying things into the third
category. This could be remedied by working on the categories themselves.
Oversampling is a potential solution. Another way would be to set categories in a way
that facilitates better distribution. The following graphs show plots of loss vs epochs
for varying number of nodes in the hidden layer.

Number of hidden neurons: 24

Number of hidden neurons: 20

Number of hidden neurons: 28

The performance of the system can also be improved by pruning neurons that are not
helpful. Although Badness didn’t show reliable improvements, other criterion like
Relevance and Distinctiveness might be more helpful. Better solutions can be sought
in future work by expanding upon this network using evolutionary and genetic
algorithms. The comparison of the simple classifying network, the network after
pruning and the network aided by genetic algorithms may yield interesting results.

Some issues could also have been resolved by finer preprocessing. Perhaps some
attributes could have been encoded in a manner that ensures faster convergence and
fewer mistakes. Perhaps, if the deep network was successfully run, the results may
have been better than what the simple network yielded with/without pruning. This
possibility serves as a good avenue for future work.

A research paper that features the same dataset [2] uses a more complex network,
with two hidden layers. It also has reduces the number of attributes to 17 in the
preprocessing phase, using The Rough Sets theory. There also seem to be more
instances in the dataset that the paper uses. This could have been achieved using some
sampling methods. The results of that paper cannot be compared to this work easily as
the authors predicted absenteeism instead of categorising it into classes. But the graph
of their network output maps pretty closely to the desired output for a vast majority of
instances. This indicates that our work can improve from looking into other types of
(deeper?) network structures and optimisation methods. If done well, a system like
ours could help predict absenteeism in workplaces and contribute to improving
productivity for individuals and organisations alike.

5 References

[1] ​Hagiwara, Masafumi. "Novel backpropagation algorithm for reduction of hidden
units and acceleration of convergence using artificial selection." ​Neural Networks,
1990., 1990 IJCNN International Joint Conference on​. IEEE, 1990.
[2] ​Ricardo Pinto Ferreira et al.2018, Artificial Neural Network And Their
Application In The Prediction of Absenteeism At Work. Int J Recent Sci Res. 9(1),
pp. 23332-23334.

