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Abstract. Feed forward networks that train using back-propagation have been                   
a much discussed subject in industry and research. Such networks facilitate                     
systems that given the right type (and size) of data, predict results or classify                           
objects with relative ease. 
 

One common complaint with such systems has been the following - there                       
seems to be no reliable way of knowing in advance, the number of hidden layer                             
neurons needed for optimum functioning of the network. And often,                   
satisfactory results are obtained after overestimating this number, in which                   
case, the system can be made more efficient if these neurons are pruned. This                           
paper studies the effects of one such pruning strategy: pruning by Badness                       
factor. 

 
Our network predicts absenteeism at work using factors such as employee                     
weight, height, BMI, distance from workplace, prior record of social                   
smoking/drinking and so on. We do this by training our network on a record of                             
employee absenteeism from a courier company in Brazil. The ANN classifies                     
the absenteeism into one of three categories, and we assess the accuracy of the                           
system using various means. Then we prune one of the excessive nodes, and                         
re-evaluate our system’s accuracy. While accuracy is seen to marginally                   
improve in 60% of the cases, it stays the same in 10% of the runs and decreases                                 
in the remaining 30%. Pruning by badness is found to be a not too reliable                             
strategy for reducing extra neurons. The paper also discusses the application of                       
Deep Neural Networks to the same problem, although the implementation ends                     
up not working.  

Keywords: ​Artificial Neural Networks, Pruning, Badness, Deep Neural               
Networks 

1   Introduction 

Absenteeism is the absence of an employee from their workplace. Predicting the                       
extent and frequency of the absenteeism of employees can be beneficial to companies                         



and organisations in terms of productivity and cost. 
 
We worked with the Absenteeism at work data set from the UC Irvine Machine                           
Learning Repository. It contains 21 attributes, one of them being absenteeism in                       
hours. The 740 instances present in the dataset are sufficient to train and test a neural                               
network that predicts the absenteeism of a given employee by looking at their data.                           
The dataset is a record of employee absenteeism from a courier company in Brazil. It                             
is well organised and has no missing values. The aforementioned reasons make the                         
dataset suitable for our task. The last attribute in the table was the Absenteeism time                             
in hours, this is what we aimed to predict. The other 20 attributes were: Individual                             
Identification (ID), Reason for absence (a categorical variable in numerical form, one                       
number denoting each of the 28 possible categories), Month of absence, Day of The                           
Week, Seasons, Transportation Expense, Distance from residence to work, Service                   
Time, Age, Work load Average/day, Hit target (achievement of periodic goals in                       
percentage), Disciplinary failure, Education, Son, Social Drinker, Social smoker, Pet,                   
Weight, Height and Body Mass Index. Although the dataset had the target attribute in                           
numerical value (hours of absenteeism), for a more comprehensive analysis of results,                       
it was decided that this was best turned into a classification problem. So the                           
absenteeism hours were divided into three classes. (More discussion about this in next                         
section). Once the neural network was ready and running, we analysed the results of                           
the test runs and worked on ways to improve the system. A simple neural network can                               
be improved in roughly two ways - the first being accuracy (in terms of its results),                               
the second being efficiency (in terms of number of hidden nodes, or time/training                         
taken to reach the results). We use pruning for this purpose and measure the results                             
primarily in terms of classification accuracy. 

1.1 Badness 

Badness factor for a hidden unit is the sum of back propagated error components over                             
all patterns [2]. So for a dataset with k number of patterns, the badness factor for each                                 
node in layer n would be calculated by: 

 
● Feeding the data forward pattern by pattern (1 to k). 
● Finding the error component from each node in layer n+1 to each node in                           

layer n. 
● Adding the above error components node-wise, so we have the net error for                         

each node in layer n. 
● Storing these values and adding to them again and again, the node-wise error                         

components for each pattern. 
● Once all k patterns have been iterated through, we find the absolute value of                           

these accumulated error components. These are the badness factors for each                     
node in layer n. 

● We eliminate the node with the highest badness factor. 
 



Although pruning by badness may be simple in approach, it’s arguable whether it’s a                           
good strategy or not. Removing the node with the highest badness factor is akin to                             
removing the node that has done the maximum amount of learning, and is an                           
approach susceptible to backfiring in terms of accuracy​. 
 

1.2   Deep Neural Networks 

A deep neural network is an artificial neural network with multiple hidden layers                         
between the input and output layers. It’s simply a ‘deeper’ feed forward network with                           
a greater number of hidden layers. There is no such agreed number of hidden layers                             
beyond which a network is considered to be deep, so the ‘depth’ is a rather soft                               
property. It is often argued that a simple neural network (with a single hidden layer)                             
with a finite number of hidden nodes can approximate almost any function, and can in                             
principle learn anything. However, deep neural networks have been seen performing                     
better for certain kinds of problems. The extra layers may enable composition of                         
features from lower layers, potentially modelling complex data with fewer nodes than                       
a similarly performing shallow network. DNNs have seen a massive surge in                       
popularity over the last five years. 
 

 
 



2   Method 

2.1   Preprocessing 

Our first step was to make the data ready for use. This involved taking a look at the                                   
dataset, and encoding and formatting the data for the best results. Because the                         
identification number of an employee did not play into their likelihood of absence,                         
this column was dropped. This left the table with one less attribute than it started with.                               
Next, we looked upon the attribute ‘Reason of absence’. Being a key causal factor in                             
the absence of employees, this was definitely an important attribute. Our first step                         
would be to convert the categories into numerical values. But fortunately, the dataset                         
already contains the categories in numerical form. But this would mean that a reason                           
corresponding to a high numerical value would affect the network more than the a                           
reason with lower value. But there was no such order in the importance of these                             
reasons. In order to make sure these numerical values did not affect our results, we                             
used one hot encoding. 
 
One hot encoding transforms categorical attributes into a format that works better                       
with classification neural networks. This is done by representing each category with a                         
boolean attribute. The attribute is true only for rows which belong to the                         
corresponding category. For example:  
 

ID  Species  Numerical value 

1  Human  0 

2  Tuna  1 

3  Dog  2 

4  Tuna  1 

 
 

ID  Human  Tuna  Dog 

1  1  0  0 

2  0  1  0 

3  0  0  1 



4  0  1  0 

 
 
Once this is done, all input nodes corresponding to these categories carry the same                           
input value. Our next step was to normalise input data. Although it’s not compulsory,                           
normalising helps reach convergence faster. For all data in each column in the dataset                           
except the target attribute (Absenteeism time in hours), we subtracted the mean of the                           
column, and divided this difference by the standard deviation. This scaled down all                         
values to relatively small numbers in close range with each other, making it easier to                             
approach the global minima of the error function.  

2.2   Splitting the data 

Once the data has been encoded and normalised, we move onto our target attribute.                           
Because we’re making a classifier for the purpose of this task, we divide and encode                             
the target values into three categories: 

 
● Less than or equal to 10 hours => 0 
● Between 10 and 40 hours => 1 
● Greater than 40 hours => 2 

 
Other intervals were tried, but the results showed a lack of balance. Because a vast                             
majority of employees show an absence of less than 10 hours, these intervals were                           
chosen to allow as many entries as possible into the other two categories for better                             
balance. This was not made a binary classification because that would leave too much                           
to interpretation, reducing the utility of the system. For example: If we divided the                           
data into two classes on each side of a set point (say 60 hours), about 95% of the                                   
entries would still fall to the left of 60 hours. Furthermore, this would categorise an                             
employee absent for 120 hours and a different employee absent for 61 hours in the                             
same class. 
 

The dataset was shuffled and then randomly split 80:20 for training and testing sets.                           
Both these sets were further split into input and target values. 

2.3   The neural network 

The neural network was created using PyTorch. We PyTorch.nn module was                     
extended to make a simple two layer network. The number of nodes in the input layer                               
was equal to the final number of attributes after preprocessing (46 in total). There                           
were three output nodes one for each of the possible categories. There’s no set way to                               
determine an optimum number of hidden nodes for the hidden layer. In a good                           



number of cases, the number of hidden nodes is found to lie somewhere between the                             
number of input and output nodes. So for our network, we started with the mean of                               
the two. This is a simple feed forward back propagation neural net, so we used                             
sigmoid function with softmax.  

2.4   Pruning 

The next bit involves finding the badness factors for each node in the hidden layer,                             
and pruning the excessive ones. Although pruning by badness itself is a rather simple                           
approach, its implementation through pyTorch is deceptively tricky. The training                   
input is split into patterns to be fed forward into the network. It’s important that this                               
be done, since the forward() function in pyTorch does not work with a Tensor of less                               
than one dimensions. This means feeding the data row by row requires a different                           
(manual) approach, that would make the usage of pyTorch rather pointless, thus                       
eliminating that possibility. 

 
Once these patterns are being fed, the net loss is calculated which is the total error of                                 
the network for each pattern. This net loss is split into the hidden layer connections in                               
proportions of the weights that these connections have been assigned. This can either                         
be done by manual calculation or by accessing the gradient of the weight parameter.                           
The split error is stored in a one dimensional Tensor to be added to the next batch of                                   
split errors from the next pattern. All these error components are accumulated while                         
iterating through the the patterns. Once this is finished, the node-wise stored error                         
components go through an abs() function to make sure we’re measuring the badness                         
regardless of the sign. The maximum of these values is the node with the maximum                             
accumulated error. 

 
Although there are many ways to eliminate nodes, for simplicity’s sake in our study                           
we pruned by setting all connection weights of the desired node to zero. After this, the                               
requires_grad variable was set to False, making sure that the node weights would                         
undergo no further changes. 

2.5   Deep Neural Network 

The simple two layer network had a blind spot when training with instances of the                             
second and third categories. (This can be seen in the confusion matrices in the Results                             
section). Which is why, this part of the study, it was expected that a deeper network                               
with fewer nodes in each layer (and roughly the same number of hidden nodes in                             
total) would perform better classification, especially for instances which belong to the                       
second and third categories. The structure was built and connected using PyTorch’s                       
built-in torch.nn.Module. However, when feeding the data into this network, some                     
issues were encountered in the feed-forward function of this structure, which could                       
not be resolved in the given time-frame.  
 



3   Results and discussion 

The In the training set, the network showed an increasing accuracy over 5000 epochs                           
(increasing beyond 99% in the end). In the testing set, an accuracy of between 86 and                               
90 percent was observed. 
 
Having known the skew in the target data, it’s very much possible that the high                             
accuracy was a result of a majority of data belonging to one class. In order to test for                                   
this we used confusion matrices instead. 
 
Table 1: Testing and training matrices 
 

Confusion matrix for training: 
 

 549   0     1 
   5    33    0 
   1     0     10 

Confusion matrix for testing: 
 

 124    3    0 
   8    1    1 
   2    1    1 

 
Table 2: Testing matrices before and after pruning 
 

Before: 
Testing Accuracy: 90.14 % 
Confusion matrix for testing: 
 

 124    5    1 
   6    3    1 
   1    0    1 

After: 
Testing Accuracy: 91.55 % 
Confusion matrix for testing: 
 

 127    3    0 
   7    2    1 
   1    0    1 

 
 

In case of pruning, the results were mixed. Out of 10 runs, 6 yielded marginally                             
increased accuracy. In 3, accuracy was lost, and in 1, there was no change. This is not                                 
too surprising given that badness is not the most comprehensive metric for removing                         
excessive nodes. To remove the node with maximum errors also means to lose on a                             
huge chunk of the learning that the system has done so far. 



4   Conclusion and future work 

The performance of the system can be improved by tinkering with the number of                           
hidden neurons, number of epochs and learning rate. But even despite playing with                         
these variables, the system doesn’t do very well in classifying things into the third                           
category. This could be remedied by working on the categories themselves.                     
Oversampling is a potential solution. Another way would be to set categories in a way                             
that facilitates better distribution. The following graphs show plots of loss vs epochs                         
for varying number of nodes in the hidden layer. 
 

 

 
 

Number of hidden neurons: 24 

 
 

Number of hidden neurons: 20 
 



 
 

Number of hidden neurons: 28 
 
 
The performance of the system can also be improved by pruning neurons that are not                             
helpful. Although Badness didn’t show reliable improvements, other criterion like                   
Relevance and Distinctiveness might be more helpful. Better solutions can be sought                       
in future work by expanding upon this network using evolutionary and genetic                       
algorithms. The comparison of the simple classifying network, the network after                     
pruning and the network aided by genetic algorithms may yield interesting results. 
 
Some issues could also have been resolved by finer preprocessing. Perhaps some                       
attributes could have been encoded in a manner that ensures faster convergence and                         
fewer mistakes. Perhaps, if the deep network was successfully run, the results may                         
have been better than what the simple network yielded with/without pruning. This                       
possibility serves as a good avenue for future work. 
 
A research paper that features the same dataset [2] uses a more complex network,                           
with two hidden layers. It also has reduces the number of attributes to 17 in the                               
preprocessing phase, using The Rough Sets theory. There also seem to be more                         
instances in the dataset that the paper uses. This could have been achieved using some                             
sampling methods. The results of that paper cannot be compared to this work easily as                             
the authors predicted absenteeism instead of categorising it into classes. But the graph                         
of their network output maps pretty closely to the desired output for a vast majority of                               
instances. This indicates that our work can improve from looking into other types of                           
(deeper?) network structures and optimisation methods. If done well, a system like                       
ours could help predict absenteeism in workplaces and contribute to improving                     
productivity for individuals and organisations alike. 
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