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Abstract. This paper studied on the implementation of neural network on the Letter Pattern Recognition
Data set, and used Heuristic Pattern Reduction [2] and genetic algorithm for feature selection to optimise
the model. As results, the Heuristic Pattern Reduction succeeded in reducing computational costs while
keeping the model’s generalisation ability from decrease. On the contrast, due to the nature of the data,
genetic algorithm for feature selection played a limited role and exposed its limitations. This paper also
tested many parameters affecting the prediction ability of neural networks through the principle of control
variables, and successfully made the model perform better than the Holland-style adaptive classifier systems
introduced by Frey and Slate [5].
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1 Introduction

This paper is aimed to implement an artificial neural network, then use optimisation strategies to improve the
model and compare it with other related papers to reflect the advantages and disadvantages of neural networks
and the optimisation methods used.

In this paper, a classification problem on Letter Recognition Data Set from the UCI website was chosen
[1]. The problem to solved is to identify capital letters in the English alphabet from lots of black-and-white
rectangular pixel. Each of these 20000 images were randomly distorted from 20 different fonts of English capital
letters and converted into 16 numerical attributes. This dataset is chosen because of its moderate size, which
means the training time can be controlled within an acceptable range, and the number of instances is large enough
for the training of neural networks. In addition, the attributes are also appropriate because of its moderate size
for implementing a genetic algorithm to optimise the feature selection, and its numerical nature eliminates the
need for complicated pre-processing. Besides, choosing this dataset also has practical meaning. Letter recognition
is considered as an important technique in pattern recognition, artificial intelligence and computer vision, which
can be used in Human Machine Verification, handwriting recognition, document scanning and many other fields.

In the following work, I will use genetic algorithm to optimise the feature selection, then implement an
artificial neural network to fit the data and use heuristic pattern reduced introduced by Gedeon and Bowden
[2] and other parameter adjustment methods to improve it. Then it will be compared with models from other
papers based on the same dataset and discuss whether the model implemented in this paper is better or not.

2 Method

2.1 Data Preprocessing

The raw data is ideal, because all the 16 numeric features have been scaled into a range from 0 to 15 and there
are no missing attribute values. As for the distribution of letter, the target variable to be classified, as Fig. 1
shown, the 26 classes are in a balanced distribution, which means there are no necessary to do oversampling
or undersampling. Besides, the numerical nature of all 16 attributes makes encoding and decoding unnecessary.
Therefore, I performed standardisation on the data, which is a basic preprocessing method that subtracts each
value of dimensions of the data from the average of that dimension and then dividing it by the standard deviation
of the dimension, thereby normalising each dimension to the same scale. This formula is given by:

z =
x− x
S

, (1)

where x is the mean of the dimension, S is the standard deviation of the dimension and S 6= 0. Then headlines
were added to the data for a clear view. After that, letter, the target categorical variable, was converted into
numeric according to alphabetical order. For example, A was converted into 0, and Z was converted into 25.

After pre-processing, the data was randomly separated into a 80% training dataset and a 20% testing dataset.

2.2 Implement the Neural Network

In this paper, PyTorch 4.0 has been used to implement neural network on Python 3.6. When the operating
environment supports, CUDA will be used to perform Pytorch Tensors and models on NVDIA GPU for a
shorter training time. Some code that will be reused, such as partitioning data into X and Y are encapsulated
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Fig. 1: Class Distribution of Dataset, the abscissa represents classes while the ordinate represents the number
of each class.

into functions to save time and effort and reduce the possibility of bugs. For the main part of the code, since
the model used for prediction is only trained once, it does not need to be encapsulated.

More complex artificial neural networks than that used in genetic algorithm for optimisation were trained
for a better performance. This neural network is a multi-layer feed-forward network with back-propagation, in
which units between two adjacent layers are connected to each other, without backward, horizontal, or multi-
layer connection. The units of the previous layer and that of the next layer are connected by Linear function.
In order to find the parameters that optimise the model, a large number of different combinations of neurons
and hidden layer numbers, optimisers, activation functions, learning rates, and updating epochs were tested.
After each parameter adjustment, firstly stratified 10-fold cross-validation will be performed to ensure that the
model is not overfitted, then a model will be trained with full training set and run prediction on the test set,
which will be the final result of this model.

2.3 Genetic Algorithm

For machine learning, the selection of features is significant. On the one hand, selecting features that irrelevant
or have limited association with the target variable will increase the noise that the model learning from. On the
other hand, Selecting features that have a large or even linear correlation with the target will largely improve
the prediction accuracy of the model. However, datasets often contain a large number of features, making
it impractical to test every possible combination of features through exhaustive search. In contrast, a better
approach is to use genetic algorithms for feature selection.

Genetic algorithm is an evolutionary algorithm inspired by the theory of natural selection. This algorithm
is actually a random search algorithm that generates solutions to optimisation problems through bio-inspired
mutation, crossover, and selection operations. In this paper, genetic algorithm is used to find the optimise
features for training. In addiction, the python package deap has been used to implement the it.

The flowchart of the algorithm is shown in Fig. 3. First, the selection of the 16 features will be encoded as
16-bit chromosomes as Fig. 2 shown, in which each bit corresponds to whether a feature is selected or not. Then
the population will be randomly initialised by the Bernoulli distribution with probability p=0.5. After that,
the population will be evaluated by training a simple neural network using the feature selection expressed by
chromosome, where the fitness value will be the accuracy of the model. If the generation of breeding population
has reached a predetermined threshold, the genetic algorithm will be terminated, and the individuals with the
highest fitness in the current generation will be chosen, then the features selected by its chromosomes will be
considered as the optimal feature selection. On the other hand, if the threshold has not been satisfied, the
algorithm will proceed to the next step, crossover. This operation is to exchange some genes between a couple of
chromosomes using the function cxOrdered, which is a simulation of chromosome exchange and recombination
in biology. The next step is mutation, which is randomly generated according to a predefined probability. When
a mutation occurs, the mutShuffleIndexes function will be used to shuffle individual features and then return
them into the chromosome. After that, another evaluation will be held, where the selRoulette function will
be used to randomly select individuals and select the one with the highest fitness value. After selection, the
algorithm will return to the termination step, and then cycle in the order of crossover, mutation, and selection,
until the threshold satisfied.

In order to reduce the computational complexity of the algorithm, during the fitness values evaluation, a very
simple neural network structure (with a hidden layer and 5 hidden neurons) will be used and 30% of training
set will be extracted hierarchically by applying the heuristic pattern reduction described later. Besides, training
will be terminated under 500 generations because there is no need to fully train the model.

After a number of generations, the genetic algorithm will decide the optimal feature selection. In the later
work of this paper, these optimal features will be applied to the training of more complex neural networks.

2.4 Heuristic Pattern Reduction

Heuristic pattern reduction has been used to improve the performance of the model. According to Gedeon and
Bowden [2], heuristic pattern reduction is a method that can raise the performance of the model and decrease
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Fig. 2: The structure of the chromosome is a 16-bit list, where each bit represents a gene. The expression of each
gene is determined by the value of the bit. 0 represents no expression and 1 represents to be expressed.

Fig. 3: The flowchart of genetic algorithm for feature selection.

the training time by reducing the size of the training dataset. In this paper, the specific implementation method
is to keep the overall characteristics of the data set by using stratified sampling of letter by 10% less each time.

2.5 Evaluation Methods

Stratified 10-Fold Cross Validation has been used to validate the model, which is a validating method that
divides training set into 10 folds and uses 1 of them for testing and the other 9 for training each time to train
a neural network model, which means there are 10 model that will be trained each using 90% of the training
set. Different from ordinary cross-validation, stratified cross-validation uses stratified sampling to partition the
validation set. This allows the partitioned validation set and training set to retain the characteristic of the
original data set as much as possible and minimise the error between the prediction results on the validation
set and the actual performance of the model. In the process of cross-validation, the test set will be completely
independent of cross-validation, which means that the model will never contact the test set during the entire
training process. This ensures that the trained model will not overfit the test set, and thereby ensures the
prediction result on the test set will be reliable.

In addiction, confusion matrix has been used in evaluating the model. In the matrix, the columns represent
the instances in actual classes, and the rows represent the instances in predicted classes. For each class, the
number of times the class was correctly classified will be distributed on the diagonal of the matrix, the number
of times other classes are erroneously labelled to this class will be distributed in other positions on the row. The
number of misclassification of this class to other classes will be distributed in other positions on the column.
The significance of this matrix is clearly reflecting the model’s performance in predicting different classes, and
thus enabling observations on which categories are difficultly distinguishable for model.

Cross entropy loss has also been used in evaluation. The meaning of this value is to describe the distance
between the model and the ideal model. In Pytorch [3], this function is defined as:

loss(x, class) = − log

(
exp(x[class])∑

j exp(x[j])
)

)
= −x[class] + log

∑
j

exp(x[j])

 . (2)

Comparing with accuracy or the classification error, which is given by:

classification error =
count of error

count of all items
, (3)

cross-entropy loss can provide a more accurate evaluation of model quality during training.
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3 Results and Discussion

3.1 Genetic Algorithm

Different combinations of population sizes and breeding generations were examined as illustrated in Tab. 1.
Theoretically, the genetic algorithm will converge to several optimal values when there are enough generations.
In this result, the optimal feature selection is all 16 features, which is explainable because the features of this
data set are all derived from the key features of the letter images (for example, positions and mean edge count),
which makes each feature have an important contribution on letter recognition.

Generations Population Optimal Chromosome Accuracy

20 10 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 94.89%
20 10 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1 89.76%
30 10 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 93.95%
20 30 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 94.92%
50 10 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 95.03%
50 30 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 94.96%
50 1 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1 45.52%
50 5 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0 75.79%

Table 1: Results of genetic algorithm using different generations and population settings

Interestingly, the experimental results also reflects the instability of the genetic algorithm. As shown in the
table, under the same generation and population settings (20, 10), due to the different population initialisations
and the large number of random variations and crossovers in the evolutionary process, the final presented results
may vary greatly, indicating that the genetic algorithm is easy to fall into local optimum. The solution is to
increase the number of populations and generations, and use larger mutation probabilities. However, while
increasing the size of the algorithm, the computational complexity of the algorithm will greatly increase, which
makes it too expensive to simulate an extremely large-scale population breeding to obtain the optimal selection.
Therefore, balancing the size of the algorithm and the robustness of the algorithm is a significant issue. In the
actual test, when the population is set to 10 and the generation is 50, and the mutation probability of 0.1 is
used, the probability of generating a global optimum is high enough.

3.2 Adjust Parameters

Hidden Layers and Neurons. Different combinations of layers and neurons have been tested. As Fig. 4
shown, the three curves have similar trends, and the results are very close at high neuron numbers, indicating
that a single-layer neural network running on this data is sufficient for saturation training effects. In addiction,
The curves are approaching the 100% with decreasing slopes, which makes it considerable to take the number
of neurons slightly higher than the corners of the curve in order to balance the training time and prediction
accuracy of the model, because after this corner, the effect of increasing the number of neurons and hidden
layers is limited while the computational complexity growing more rapidly. Therefore, the best combination is
one hidden layer and 128 hidden neurons.

Activation Functions. As a classic activation function for machine learning, sigmoid was intuitively considered
first, which is defined as:

σ(x) =
1

1 + e−x
. (4)

Although this function has advantages such as the easy calculation of its derivation, there are three major
drawbacks that make it less practical. Firstly, in its derivation, the input will be compressed to 1/4 of the
original, which will lead to gradient vanishing, in other words, when the number of hidden layers increases, the
derivative of the back layers will be very close to 0, which makes the back propagation algorithm difficult to
converge. Secondly, the output is not zero-centred, which means the derivatives and inputs are always either
both positive or both negative, leading to a slow convergence of the back propagation algorithm. Thirdly, the
exponentiation in sigmoid is time consuming.

On the other hand, unlike sigmoid, ReLU (Rectified Linear Units), which is defined by:

ReLU = max(0, x) , (5)

solves the problem of the gradient vanishing, which improves the convergence speed of the back-propagation algo-
rithm. At the same time, it does not require exponentiation, which largely reduces its computational complexity.
However, this function also has disadvantages. Firstly, similarly to sigmoid, its output is also not zero-centred.
Secondly, this function has a dead ReLU problem, that is, some neurons may never be activated, resulting in
the corresponding parameters will never be updated. This problem is due to parameter initialisation or too high
learning rate.

Therefore, ReLU (Rectified Linear Units) was used instead of sigmoid.
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Fig. 4: Relationship between accuracy and number of hidden layers and neurons, the abscissa represents hidden
units in each hidden layer, and the ordinate represents the accuracy of predictions using corresponding model,
the three fold lines respectively represent one, two and three hidden layers.

Optimisers. Many optimisation algorithm were tested, including SGD (Stochastic Gradient Descent), RM-
Sprop (Resilient Backpropagation), Adadelta, Adam (Adaptive Moment Estimation) and Adamax. Fig. 5 shown
illustrates the performance of models trained with different optimisers, from which it can be found that models
with Adamax, Adam and RMSprop have higher accuracy on the testing set, among which Adam has the lowest
cross-entropy loss. In addiction, this optimiser also minimised the training time. Therefore, Adam is the best
performing one among the candidate optimisers.

The good performance of Adam is closely related to its nature. It is an algorithm for ”first-order gradient-
based optimisation of stochastic objective functions, based on adaptive estimates of lower-order moments” [4].
This optimiser has high computational efficiency, little memory requirements, no variance on diagonal rescaling
of the gradient, and is suitable for issues with large data.

Fig. 5: Accuracy and Cross-entropy Loss of Models using different optimisers. The abscissa represents the op-
timiser, the main ordinate represents the accuracy, the secondary ordinate represents the the cross entropy
loss.

Learning Rates and Updating Epochs. High learning rates can reduce the time cost of the calculation.
However, it may cause the optimization algorithm to fall into a local minimum. Therefore, a self-decay learning
rate is necessary because it can reduce the time for the gradient to approach the optimal value, while increasing
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the flexibility of learning when approaching the optimal value. Because Adamax features self-decay, manual
adjustment on decay parameters is not necessary. After testing several initial learning rate, 0.01 has been
chosen.

The update epoch number changes with other parameters. When the loss no longer decreases, the training
should be terminated to avoid overfitting and reduce the time cost.

3.3 Heuristic Pattern Reduction

Fig. 6 shown is the result of using heuristic pattern reduction. According to the figure, before reducing to 50% of
training set, as the patterns participating in training hierarchically decreases, the decrease on accuracy of model
prediction is limited, and the increase on cross-entropy loss is also within a limited range. After the model
reduced to less than 50% of training set, the change in accuracy and cross-entropy loss reaches a relatively
significant scale. This shows that when the patterns are reduced to half, the generalisation ability of the model
is still not significantly reduced. Therefore, it is considerable to hierarchically halve the patterns in order to
reduce computational costs.

Fig. 6: Accuracy and Cross-entropy Loss of Models after applying Heuristic Pattern Reduction. The abscissa
represents the proportion of data sampled by stratification, the main ordinate represents the the cross entropy
loss, the secondary ordinate represents the accuracy

3.4 The Final Parameters and Performance

The final model is a one-hidden-layer neural network with 128 hidden neurons, using Adam as optimiser and
ReLU as activation function, trained on a 50% training set with a learning rate of 0.01 for 10000 epochs, with
feature selection completed by genetic algorithm. This model finally performed an accuracy of 95.69% and a
cross-entropy loss of 0.413 on testing set. The average accuracy on the 10-fold cross-validation is 95.03%, which
indicates the model did not overfit the data.

3.5 Comparison with other paper

Frey and Slate used Holland-style adaptive classifier systems to perform machine learning on this data set [3].
According to the authors, the best accuracy of their models was 81.6%, which is a worse result comparing with
the neural network model implemented in this paper. The most likely reason of this difference is the algorithm.
According to the authors, the principle of Holland-style adaptive classifier systems is creating a list of condition-
action rules and parallelly applying it to messages which represent whether specific features exist in the current
environment. This algorithm is largely different from neural networks, which can be a reason of the disparity of
performance.

4 Conclusions and Future Work

This paper constructed a neural network model on Letter Recognition Data Set and improved it with appro-
priate methods, including parameter adjustment, heuristic pattern reduction and genetic algorithm for feature
selection. In the steps of optimising the model by comparing multiple methods, the principle of control vari-
ables has been strictly followed. Because of the relatively large size of data, this paper reasonably balanced the
training time and the generalisation ability of the model.
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Through stratified sampling of target variables, the heuristic pattern reduction largely reduced the training
time of the model while keeping the generalisation ability of the model from decreasing, which proved the
advantage of this method. As for the genetic algorithm for feature selection, it did not improve the accuracy
of the model because the optimal feature selection on the data set is selecting all 16 features. This is due to
the fact that each feature of the data is largely relevant to the target variable. The experiment also shows the
limitations of the genetic algorithm, such as easy to fall into local optimum and high computational cost. This
paper also compared with Frey and Slate’s Holland-style adaptive classifier systems on the same dataset. As a
result, this paper performed better on the data set due to the advantages of artificial neural network algorithm.

Theoretically, the continued expansion of the size of neural networks by increasing the number of hidden
layers and neurons and training more generations until overfitting could continue to improve prediction accuracy.
However, because the prediction accuracy of the model is already high, and the size of the model is already close
to saturation, continuing to expand the scale will make the cost of computation more expensive. Therefore, in
the future work, using other more complicated data, such as image data or other noisy, unprocessed data is a
direction that can be considered, these data can provide more space to continue researching on optimisations
on neural networks. Moreover, there are some optimisation methods for neural networks that are not covered
in this paper, such as pruning and cascading network construction can be considered.
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