
 1

Classification of Advertisements on the Internet
and Optimal Network on Distinctiveness

Woojin Ra

Department of Computer Science, Australian National University, Canberra, Australia
u6058768@anu.edu.au

Abstract. Internet advertisements displayed around websites bring revenue to the host at the cost of visitors’ bandwidth
and can lessen the usability of the website. While numerous ad-blocking systems exist that rely on predefined rules,
already implemented AdEater1 system takes an inductive learning approach, automatically generating rules from
training examples. Further experiments and modifications that build on AdEater demonstrate that a 3-layer neural
network significantly outperforms AdEater with training time of less than one minute, classification time of 0.94
milliseconds and accuracy of 98% with a slightly modified dataset. This paper demonstrates that an evolution of a
neural network based on distinctiveness resulted a space and time optimal network with 94% hidden layer reduction
and 53% reduction of testing time.

1 Introduction

Internet advertisements offer a method of earning revenue for the website’s host by typically displaying media with
hyperlinks to third-party products. While these advertisements support the host and may even affect the livelihood of the
host, the visitors must pay with bandwidth, usability of the website, and sometimes security of their device. Media,
including images and videos, greatly increase loading time of the website thus wasting visitors’ time if they have slow
connections. Some visitors prefer not to view such advertisements. Other visitors agree that the Internet is public and
should be free of advertisements. On a different note, some third-party companies are displaying malicious codes
disguised as advertisements. These malicious codes exploit vulnerabilities present in browsers to survey activities without
visitors’ knowledge or to mine bitcoins while visitors stay on the website.

Previously implemented AdEater system was “a fully-implemented browsing assistant that automatically removes
banner advertisements from Internet pages before the corresponding images are downloaded, so pages download faster”
[4]. While AdEater focuses on gathering data and removing advertisements as an assistant, we focus on the improvements
of AdEater as a neural network and the efficiency of that network. Section 2 describes the architecture of AdEater and
dataset encoding, while section 3 describes the implementation of a 3-layer neural network featuring batch training with
sigmoid activation functions. Furthermore, we test the neural network with the provided dataset [3] with slight
modifications and compare the results with the original paper2 (Sec. 3.2). Section 4 examines network reduction based on
distinctiveness [2] and its optimization on the network. Section 5 extends the optimization of the network by applying
dynamic reduction over iterations to teach a state of space and time optimality. Finally, section 6 discuss further
improvements on the neural network, future plans and summarize conclusions.

1 AdEater system was implemented by Nicholas Kushmerick at the University College Dublin on July 1997.
2 Learning to remove Internet advertisements by Nicholas Kushmerick

 2

2 The AdEater system and dataset encoding

AdEater is a fully-implemented browser assistant that
gathers examples, creates rules by an inductive
learning algorithm named C4.5 [6, 7], and removes
advertisements before the browser downloads the
media. In order to remove advertisements before the
browser downloads the media, AdEater examines the
anchor <a> tags3 in raw HTML, then creates a fixed-
width feature vector from the anchor tag for the trained
system. These feature vectors have six categories:
dimension, caption, alt, 𝑈"#$% , 𝑈&#'(%& and 𝑈)*(,
features mostly being boolean (binary) representation
on one or two worded phrases that exist within the
anchor. Phrases that do not meet the frequency
requirement are ignored. Furthermore, certain
keywords such as “https” or “www” are excluded from
the feature vector as they contain little information on
the anchors. The final dataset consisted of 3278
instances with 1558 features.

AdEater chose C4.5 algorithm based on the
following requirements of the system: 1) the trained
system when online, must execute quickly, 2) the
learning algorithm must not be overly sensitive to
missing features or classification noise, 3) learning
algorithm must scale well with the number of features
and be insensitive to irrelevant features and 4) the
trained system needs to evolve over time [4].

After training AdEater with C4.5 algorithm over a modest dataset, it was able to perform offline training in 5.8

CPU minutes and approximately 70 milliseconds to remove each image during the online classification phase with an
accuracy of 97.1% [4]. The creator of AdEater determined that the architecture described above performed optimally after
ten different experiments with different encodings and training methods as shown in Fig. 2 [4] and Fig. 3 [4].

3 Non-anchor images are rarely advertisements and are therefore ignored [4]

Fig. 1. An example Internet page and the
encoding of its three instances. [4]

Fig. 2. Learning curves: (a) simple methodology and (b) realistic methodology. [4]

 3

3 Neural network classification

A shift of focus from collection and classification of data to optimization of network allowed broader approaches moving
forward from AdEater and introduced different methods of classification. The original paper Learning to remove Internet
advertisements mentioned that AdEater must retrain once more data is collected and that one-sided errors are difficult to
implement (due to the difficulty of implementing bias in C4.5). Thus, among these methods, a 3-layer neural network
was chosen for its simplicity, flexibility and extensibility. A 3-layer neural network allows flexibility in dataset size and
dataset encoding while it continually learns as more data is added to the dataset. Furthermore, neural networks easily
allow for bias or weights on neurons which in turn allows one-sided errors (e.g., when in doubt, leave anchor intact) on
advertisement predictions.

3.1 The AdNetwork implementation

The implemented neural network, now will be referred to as AdNetwork, consists of three layers: the input layer, the
hidden layer and the output layer. Firstly, the input layer consists of 1555 binary neurons and 3 continuous (dimension)
neurons, representing each feature in the dataset. Secondly, the output layer consists of 2 neurons that determine whether
an instance is an advertisement or not. Finally, the hidden layer consists of 50 (𝑁,)--%. = 01𝑁).23&4 + 10) neurons which
was chosen from personal, prior knowledge of neural networks [5]. The number of input and output neurons are
predetermined by the problem whereas the number of hidden neurons can vary wildly, thus requiring further examination
(Sec. 5). On the process aspect, AdNetwork performs normalization on continuous features to improve the effectiveness
of data [8]. A portion of preprocessed dataset then trains AdNetwork for 750 epochs through sigmoid 𝑓(𝑥) = 1/(1 + 𝑒>?)
activation function and stochastic gradient descent optimization.

Fig. 4 shows the similarity of AdNetwork and AdEater’s accuracy over the offline training cycle, both being
trained with 10% increments of the dataset.

Fig. 4. Learning curves: left showing AdNetwork and right showing AdEater[4]

Fig. 3. A comparison of eight variations on the standard encoding. [4]

 4

3.2 AdNetwork performance

Fig. 5 and 6 show the results of AdNetwork with the following specifications: 1558 input neurons, 50 hidden neurons, 2
output neurons, 750 epochs, 10% batch size and 0.03 learning rate.

Fig. 5. Cross entropy loss of AdNetwork. Fig. 6. Results of AdNetwork.

Although AdNetwork performs with 98.53% accuracy, the confusion matrix should be further examined to properly judge
the performance of AdNetwork. The saturation of non-advertisements in the dataset may lead to AdNetwork learning more
about it thus leading to a lesser, 95.82% accuracy on advertisement classifications. Further experiments were conducted
with a balanced (removal of non-advertisement instances) dataset; however, it performed poorly due to the smaller size
of the dataset.
The need for better advertisement classification requires more instances of advertisements or the addition of bias towards
advertisements at the cost of false-positive advertisement classification; and visa-versa for 100% accuracy of non-
advertisement classification [5].
 The results of AdNetwork show improvements on aspects of accuracy and time but it should be noted that
AdEater utilized a CPU from 1999 while AdNetwork utilizes a modern CPU. The computational power at the time of
AdEater may have rendered 3-layer neural networks unreasonable due to its training and testing time. The focus should
be the fact that the flexibility and the extensibility of neural networks introduce greater room for improvements and
customization.

4 Network reduction based on Distinctiveness

AdNetwork is now implemented from various experiments based on AdEater4, and outputs reasonable and acceptable
performance from the given dataset. However, a network reduction technique based on distinctiveness [2] can be applied
to AdNetwork to further optimize the time and space usage. The distinctiveness of hidden neurons is determined from the
neuron output activation vector over the instance presentation set [2] and represents the similarity or the difference (hence
distinctiveness) of two hidden neurons. The distinctiveness of these sets of hidden neurons allow better understanding of
the usefulness for each neuron since too similar neurons imply redundancy (can be merged) while too different neurons
also imply redundancy (can be countered). After the calculation of vector angles, angles less than 15 degrees or greater
165 degrees are considered too similar or too different thus are removed from the network.

Hidden units

Pattern 1 2 3 Result Target
p.0000 0.5996 0.4686 0.5046 1 1
p.0001 0.5349 0.4618 0.5059 1 1
p.0002 0.5473 0.4617 0.5039 1 1

… … … … … …
p.2626 0.5176 0.4903 0.5195 0 0

Fig. 7. An example of hidden neurons vectors in AdNetwork described in Sec. 3.

4 Experiments and results found in Learning to remove Internet advertisements.

 Prediction:
Not Ad

Prediction:
Ad

Actual:
Not Ad

2233 5

Actual:
Ad

15 344

Accuracy 98.53%

Training Time 81.5 seconds

Testing Time 1.99 milliseconds

 5

Although possible to discover pairs of similar neurons by inspection in some neural networks, AdNetwork features far too
large number of patterns and is impossible to do this within a reasonable time. Hence the vector angles are calculated:

Pairs of neurons Vector angles

1, 2 4.9
1, 3 3.7
2, 3 2.8

Fig. 8. An example of vector angles calculated from pairs of neurons in Fig. 7

Following the example above, all three vector angles imply redundancy of some hidden neurons. Finally, this process
was performed on AdNetwork and determined that out of 1225 pairs of hidden neurons, 960 of them were redundant. This
led to removing half of the hidden neurons, shown in Fig. 9.

Fig. 9. Left shows a 25 hidden neuron AdNetwork loss graph and right shows the results.

A 25 hidden neuron AdNetwork performed as well as the original AdNetwork but significantly reduced the training time
and the testing time. This version of AdNetwork resulted in 188 redundant hidden neuron pairs out of 300 meaning further
network reduction was required. Finally, Fig. 10 shows a repeated network reduction based on distinctiveness.

Fig. 10. Left shows a 3 hidden neuron AdNetwork loss graph and right shows the results.

From Fig. 5, 9 and 10, the loss graph of AdNetwork are almost identical, implying that the neural network is learning
similarly in all three experiments even though the hidden neurons were significantly decreased. The accuracy results of
testing 50, 25 and 3 hidden neuron AdNetwork also support the previous claim while significantly decreasing the training
time and the testing time of the dataset.

 Prediction:
Not Ad

Prediction:
Ad

Actual:
Not Ad

2249 5

Actual:
Ad

12 365

Accuracy 97.99%

Training Time 59.4 seconds

Testing Time 1.37 milliseconds

 Prediction:
Not Ad

Prediction:
Ad

Actual:
Not Ad

2252 5

Actual:
Ad

13 371

Accuracy 97.65%

Training Time 55.7 seconds

Testing Time 0.64 milliseconds

 6

5 Evolution of AdNetwork based on Distinctiveness

Evolution of neural networks allow them to iteratively search for a set of parameters with the best results. To implement
evolution, there must be a set of neural networks with random parameters which then produce new networks with a
mixture of two fittest neural networks [5]. Although the traditional sense of evolution requires a set of neural networks,
AdNetwork only needs to evolve a single parameter, the number of hidden neurons, and with the goal of space and time
optimality, a set of AdNetworks are not required. Now, the evolution for AdNetwork will be determined by the number of
redundant neurons described in section 4.

Section 4 shows that a network reduction by distinctiveness also reduces the overall use of space and time.
However, the previous experiments only focus on 50, 25 and 3 hidden neurons and while it showed evidence of
improvements, it is difficult to deem it optimal. Therefore, AdNetwork should start with a sufficiently large number of
hidden neurons which is then iteratively and dynamically reduced to optimality. To achieve a dynamically reduced
AdNetwork, it updates its parameters with a certain interval and a removal rate. The interval was chosen to be 100 epochs
to let AdNetwork learn before being reduced to output accurate angles between the hidden neurons and the survival rate
was chosen to be 60% to emulate random survival of evolution.
 Ten experiments were conducted with 50 initial hidden neurons and found that AdNetwork reduced its hidden
layer to 4 neurons on average while keeping its accuracy and testing time. On the contrary, the training time was increased
significantly to 131.67 seconds on average which is an acceptable time compared to finding optimality by brute force5.
Fig. 11 shows a cross entropy loss of AdNetwork with evolution and its results.

Fig. 11. Left shows a 50 hidden neuron evolving AdNetwork loss graph and right shows the average results over 10 trials.

The above findings show that with each evolution, AdNetwork continues to feature a decrease in loss, meaning AdNetwork
continues to learn. One interesting point to note is AdNetwork, on average, reduced to 4 hidden neurons instead of 3
discovered in section 4 thus the original AdNetwork was further tested with 4 hidden neurons instead of 3. The results
showed better testing accuracy than training accuracy. This incremental addition of a hidden neuron consistently improved
the testing accuracy of AdNetwork over several experiments meaning the network also learned to classify Internet
advertisements with abstract patterns rather than discrete patterns.

5 Brute force may take any time between 2785 (training of 1 hidden neuron × 50) to 4075 (training of 50 hidden neuron × 50) seconds

 Prediction:
Not Ad

Prediction:
Ad

Actual:
Not Ad

2241 9

Actual:
Ad

48 321

Accuracy 97.72%

Training Time 131.67 seconds

Testing Time 0.91 milliseconds

 7

Fig. 12. Left shows training accuracy of 4 hidden neuron AdNetwork and right shows testing accuracy.

AdNetwork can now be deemed space and time optimized based on distinctiveness and four hidden neurons can also be
deemed optimal with the current parameters of AdNetwork. While AdNetwork with evolution shows further improvements
from the original AdNetwork, the findings raise new questions regarding its accuracy. AdNetwork with 4 hidden neurons
consistently showed better results in its testing accuracy than its training accuracy which may mean that AdNetwork with
4 hidden neurons is correctly learning abstract patterns, but this should be further examined with larger testing set.

6 Future work

Unlike the original AdEater, AdNetwork takes a neural network approach to resolve two of the future work discussed in
the original paper by Nicholas Kushmerick:

• Some users might prefer one-sided errors (e.g., when in doubt, leave images intact). We know of no easy way to bias
C4.5 rules in this manner but extending the learning algorithm to do so would be interesting [4].

• We already mentioned that our task is ideal for exploring “incremental” learning, in which a classifier is modified
based on an update to the training instances, rather than being relearned from scratch. As described above, nearest-
neighbour and other lazy learning algorithms are incremental but are undesirable for other reasons. Incorporation an
incremental decision tree or rule learning algorithm would improve overall efficiency [4].

The above two discussions are still valid on AdNetwork as it focuses on the shift in architecture with improvements on its
time and space efficiency. However, as mentioned in Sec. 3, AdNetwork allows for much easier manipulation of bias and
for continuous learning.
AdEater was published in 1999 when websites mainly incorporated images for Internet advertisements. However, moving
forward from AdEater introduces new types of advertisements such as videos, interactive media, malicious codes and
pop-ups, to name a few [1]. The evolution in Internet advertisements call for a broader acceptance of HTML elements in
the dataset to accommodate new formats of Internet advertisements (e.g., new Google advertisements are written in
<div> blocks with titles which clearly indicate advertisements). Furthermore, third-party companies that specialize in
Internet advertisements feature gigantic libraries of media which require hashed URLs that contain little to no information,
rendering 𝑈)*(features useless.

Fig. 13. Left shows a Google advertisement and right shows the
corresponding HTML <div> tag with hashed image URL.

 Prediction:
Not Ad

Prediction:
Ad

Actual:
Not Ad

2259 6

Actual:
Ad

16 353

Accuracy 98.14%

Training Time 59.67 seconds

Testing Time 0.69 milliseconds

 Prediction:
Not Ad

Prediction:
Ad

Actual:
Not Ad

546 6

Actual:
Ad

3 85

Accuracy 98.59%

Training Time 59.67 seconds

Testing Time 0.69 milliseconds

 8

7 Conclusion

The shift of focus and the key findings from the original paper6 describing AdEater inspired a neural network based
classifier named AdNetwork. The initial implementation of AdNetwork showed slight improvements on the accuracy of
98.53% while the confusion matrix showed room for further improvements with its consequences, depending on the users’
need. In addition, the nature of neural networks enabled future works (described in Sec. 5) to be easily implemented.
However, AdNetwork focused on space and time optimization by implementing a network reduction technique based on
distinctiveness. Neural network reduction on the hidden layer allowed for 94% reduction of hidden neurons, 32%
reduction of training time and 53% reduction of testing time while keeping the accuracy at ±1%. This neural network
reduction technique was further examined by dynamically reducing AdNetwork’s hidden layer with non-traditional
evolutionary methods. Evolving AdNetwork resulted a 4-neuron hidden layer that is both space and time optimal.
AdNetwork with 4 hidden neurons consistently showed better testing accuracy with approximately 7% increase in training
and testing time. AdNetwork also showed signs of learning abstract patterns rather than absolute patterns which may
eliminate suspiciousness of overfitting. Finally, future works consist of: a) putting weight bias for advertisements (or non-
advertisements) to approach 100% accuracy on advertisement classification (or non-advertisement classification) and b)
allowing broader acceptance of HTML tags within the dataset encoding to adapt for contemporary Internet
advertisements.

6 Learning to remove Internet advertisements by Nicholas Kushmerick

 9

References

[1] Evans, D. S. (2009). The Online Advertising Industry: Economics, Evolution, and Privacy. Jounral of Economic
Perspectives, 23(3), pp. 37-60.

[2] Gedeon, TD & Harris, D. (1991). Network Reduction Techniques. In Proceedings International Conference on
Neural Networks Methodologies and Applications. AMSE.

[3] Kushmerick, N. (1999). Internet advertisements, UCI, http://archive.ics.uci.edu/ml/machine-learning-

databases/internet_ads/.

[4] Kushmerick, N. (1999). Learning to remove Internet advertisements. In 3rd Int. Conf. on Autonomous Agents.

[5] MacLeod, C. (NA). An Introduction to Practical Neural Networks and Genetic Algorithms For Engineers and

Scientists. NA.

[6] Mitchell, T. (1997). Machine Learning. McGraw Hill.

[7] Ross Quinlan, J. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann.

[8] Van den Bout, D. E. & Miller III, T. K. (1989). Improving the performance of the Hopfield-Tank neural network

through normalization and annealing. In Biological Cybernetics, 62(2), pp. 129-139.

