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Abstract. Internet advertisements displayed around websites bring revenue to the host at the cost of visitors’ bandwidth 
and can lessen the usability of the website. While numerous ad-blocking systems exist that rely on predefined rules, 
already implemented AdEater1  system takes an inductive learning approach, automatically generating rules from 
training examples. Further experiments and modifications that build on AdEater demonstrate that a 3-layer neural 
network significantly outperforms AdEater with training time of less than one minute, classification time of 0.94 
milliseconds and accuracy of 98% with a slightly modified dataset. This paper demonstrates that an evolution of a 
neural network based on distinctiveness resulted a space and time optimal network with 94% hidden layer reduction 
and 53% reduction of testing time. 

1 Introduction 

Internet advertisements offer a method of earning revenue for the website’s host by typically displaying media with 
hyperlinks to third-party products. While these advertisements support the host and may even affect the livelihood of the 
host, the visitors must pay with bandwidth, usability of the website, and sometimes security of their device. Media, 
including images and videos, greatly increase loading time of the website thus wasting visitors’ time if they have slow 
connections. Some visitors prefer not to view such advertisements. Other visitors agree that the Internet is public and 
should be free of advertisements. On a different note, some third-party companies are displaying malicious codes 
disguised as advertisements. These malicious codes exploit vulnerabilities present in browsers to survey activities without 
visitors’ knowledge or to mine bitcoins while visitors stay on the website. 

Previously implemented AdEater system was “a fully-implemented browsing assistant that automatically removes 
banner advertisements from Internet pages before the corresponding images are downloaded, so pages download faster” 
[4]. While AdEater focuses on gathering data and removing advertisements as an assistant, we focus on the improvements 
of AdEater as a neural network and the efficiency of that network. Section 2 describes the architecture of AdEater and 
dataset encoding, while section 3 describes the implementation of a 3-layer neural network featuring batch training with 
sigmoid activation functions. Furthermore, we test the neural network with the provided dataset [3] with slight 
modifications and compare the results with the original paper2 (Sec. 3.2). Section 4 examines network reduction based on 
distinctiveness [2] and its optimization on the network. Section 5 extends the optimization of the network by applying 
dynamic reduction over iterations to teach a state of space and time optimality. Finally, section 6 discuss further 
improvements on the neural network, future plans and summarize conclusions. 
 

                                                        
1 AdEater system was implemented by Nicholas Kushmerick at the University College Dublin on July 1997. 
2 Learning to remove Internet advertisements by Nicholas Kushmerick 
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2  The AdEater system and dataset encoding 

AdEater is a fully-implemented browser assistant that 
gathers examples, creates rules by an inductive 
learning algorithm named C4.5 [6, 7], and removes 
advertisements before the browser downloads the 
media. In order to remove advertisements before the 
browser downloads the media, AdEater examines the 
anchor <a> tags3 in raw HTML, then creates a fixed-
width feature vector from the anchor tag for the trained 
system. These feature vectors have six categories: 
dimension, caption, alt, 𝑈"#$% , 𝑈&#'(%&  and 𝑈)*( , 
features mostly being boolean (binary) representation 
on one or two worded phrases that exist within the 
anchor.  Phrases that do not meet the frequency 
requirement are ignored. Furthermore, certain 
keywords such as “https” or “www” are excluded from 
the feature vector as they contain little information on 
the anchors. The final dataset consisted of 3278 
instances with 1558 features. 

AdEater chose C4.5 algorithm based on the 
following requirements of the system: 1) the trained 
system when online, must execute quickly, 2) the 
learning algorithm must not be overly sensitive to 
missing features or classification noise, 3) learning 
algorithm must scale well with the number of features 
and be insensitive to irrelevant features and 4) the 
trained system needs to evolve over time [4].  

 
 
 
 
 
 
 
 
 

 
After training AdEater with C4.5 algorithm over a modest dataset, it was able to perform offline training in 5.8 

CPU minutes and approximately 70 milliseconds to remove each image during the online classification phase with an 
accuracy of 97.1% [4]. The creator of AdEater determined that the architecture described above performed optimally after 
ten different experiments with different encodings and training methods as shown in Fig. 2 [4] and Fig. 3 [4]. 

                                                        
3 Non-anchor images are rarely advertisements and are therefore ignored [4] 

Fig. 1. An example Internet page and the 
encoding of its three instances. [4] 

Fig. 2. Learning curves: (a) simple methodology and (b) realistic methodology. [4] 
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3 Neural network classification 

A shift of focus from collection and classification of data to optimization of network allowed broader approaches moving 
forward from AdEater and introduced different methods of classification. The original paper Learning to remove Internet 
advertisements mentioned that AdEater must retrain once more data is collected and that one-sided errors are difficult to 
implement (due to the difficulty of implementing bias in C4.5). Thus, among these methods, a 3-layer neural network 
was chosen for its simplicity, flexibility and extensibility. A 3-layer neural network allows flexibility in dataset size and 
dataset encoding while it continually learns as more data is added to the dataset. Furthermore, neural networks easily 
allow for bias or weights on neurons which in turn allows one-sided errors (e.g., when in doubt, leave anchor intact) on 
advertisement predictions. 

3.1 The AdNetwork implementation 

The implemented neural network, now will be referred to as AdNetwork, consists of three layers: the input layer, the 
hidden layer and the output layer. Firstly, the input layer consists of 1555 binary neurons and 3 continuous (dimension) 
neurons, representing each feature in the dataset. Secondly, the output layer consists of 2 neurons that determine whether 
an instance is an advertisement or not. Finally, the hidden layer consists of 50 (𝑁,)--%. = 01𝑁).23&4 + 10) neurons which 
was chosen from personal, prior knowledge of neural networks [5]. The number of input and output neurons are 
predetermined by the problem whereas the number of hidden neurons can vary wildly, thus requiring further examination 
(Sec. 5). On the process aspect, AdNetwork performs normalization on continuous features to improve the effectiveness 
of data [8]. A portion of preprocessed dataset then trains AdNetwork for 750 epochs through sigmoid 𝑓(𝑥) = 1/(1 + 𝑒>?) 
activation function and stochastic gradient descent optimization.  

Fig. 4 shows the similarity of AdNetwork and AdEater’s accuracy over the offline training cycle, both being 
trained with 10% increments of the dataset. 

 

 
 
 
 
 
 
 
 
 

 
Fig. 4. Learning curves: left showing AdNetwork and right showing AdEater[4] 

Fig. 3. A comparison of eight variations on the standard encoding. [4] 
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3.2 AdNetwork performance 

Fig. 5 and 6 show the results of AdNetwork with the following specifications: 1558 input neurons, 50 hidden neurons, 2 
output neurons, 750 epochs, 10% batch size and 0.03 learning rate. 

 

 

Fig. 5. Cross entropy loss of AdNetwork.              Fig. 6. Results of AdNetwork. 

Although AdNetwork performs with 98.53% accuracy, the confusion matrix should be further examined to properly judge 
the performance of AdNetwork. The saturation of non-advertisements in the dataset may lead to AdNetwork learning more 
about it thus leading to a lesser, 95.82% accuracy on advertisement classifications. Further experiments were conducted 
with a balanced (removal of non-advertisement instances) dataset; however, it performed poorly due to the smaller size 
of the dataset.  
The need for better advertisement classification requires more instances of advertisements or the addition of bias towards 
advertisements at the cost of false-positive advertisement classification; and visa-versa for 100% accuracy of non-
advertisement classification [5].  
 The results of AdNetwork show improvements on aspects of accuracy and time but it should be noted that 
AdEater utilized a CPU from 1999 while AdNetwork utilizes a modern CPU. The computational power at the time of 
AdEater may have rendered 3-layer neural networks unreasonable due to its training and testing time. The focus should 
be the fact that the flexibility and the extensibility of neural networks introduce greater room for improvements and 
customization. 

4 Network reduction based on Distinctiveness 

AdNetwork is now implemented from various experiments based on AdEater4, and outputs reasonable and acceptable 
performance from the given dataset. However, a network reduction technique based on distinctiveness [2] can be applied 
to AdNetwork to further optimize the time and space usage. The distinctiveness of hidden neurons is determined from the 
neuron output activation vector over the instance presentation set [2] and represents the similarity or the difference (hence 
distinctiveness) of two hidden neurons. The distinctiveness of these sets of hidden neurons allow better understanding of 
the usefulness for each neuron since too similar neurons imply redundancy (can be merged) while too different neurons 
also imply redundancy (can be countered). After the calculation of vector angles, angles less than 15 degrees or greater 
165 degrees are considered too similar or too different thus are removed from the network. 

 
Hidden units 

Pattern 1 2 3 Result Target 
p.0000 0.5996 0.4686 0.5046 1 1 
p.0001 0.5349 0.4618 0.5059 1 1 
p.0002 0.5473 0.4617 0.5039 1 1 

… … … … … … 
p.2626 0.5176 0.4903 0.5195 0 0 

Fig. 7. An example of hidden neurons vectors in AdNetwork described in Sec. 3. 

 
 
 

                                                        
4 Experiments and results found in Learning to remove Internet advertisements. 

 Prediction: 
Not Ad 

Prediction: 
Ad 

Actual: 
Not Ad 

2233 5 

Actual: 
Ad 

15 344 

Accuracy 98.53% 

Training Time 81.5 seconds 

Testing Time 1.99 milliseconds 
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Although possible to discover pairs of similar neurons by inspection in some neural networks, AdNetwork features far too 
large number of patterns and is impossible to do this within a reasonable time. Hence the vector angles are calculated: 

 
Pairs of neurons Vector angles 

1, 2 4.9 
1, 3 3.7 
2, 3 2.8 

Fig. 8. An example of vector angles calculated from pairs of neurons in Fig. 7 

Following the example above, all three vector angles imply redundancy of some hidden neurons. Finally, this process 
was performed on AdNetwork and determined that out of 1225 pairs of hidden neurons, 960 of them were redundant. This 
led to removing half of the hidden neurons, shown in Fig. 9. 

 
 

 

Fig. 9. Left shows a 25 hidden neuron AdNetwork loss graph and right shows the results. 

A 25 hidden neuron AdNetwork performed as well as the original AdNetwork but significantly reduced the training time 
and the testing time. This version of AdNetwork resulted in 188 redundant hidden neuron pairs out of 300 meaning further 
network reduction was required. Finally, Fig. 10 shows a repeated network reduction based on distinctiveness. 

 

 

Fig. 10. Left shows a 3 hidden neuron AdNetwork loss graph and right shows the results. 

From Fig. 5, 9 and 10, the loss graph of AdNetwork are almost identical, implying that the neural network is learning 
similarly in all three experiments even though the hidden neurons were significantly decreased. The accuracy results of 
testing 50, 25 and 3 hidden neuron AdNetwork also support the previous claim while significantly decreasing the training 
time and the testing time of the dataset. 

 
 
 
 
 
 

 Prediction: 
Not Ad 

Prediction: 
Ad 

Actual: 
Not Ad 

2249 5 

Actual: 
Ad 

12 365 

Accuracy 97.99% 

Training Time 59.4 seconds 

Testing Time 1.37 milliseconds 

 Prediction: 
Not Ad 

Prediction: 
Ad 

Actual: 
Not Ad 

2252 5 

Actual: 
Ad 

13 371 

Accuracy 97.65% 

Training Time 55.7 seconds 

Testing Time 0.64 milliseconds 
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5 Evolution of AdNetwork based on Distinctiveness 

Evolution of neural networks allow them to iteratively search for a set of parameters with the best results. To implement 
evolution, there must be a set of neural networks with random parameters which then produce new networks with a 
mixture of two fittest neural networks [5]. Although the traditional sense of evolution requires a set of neural networks, 
AdNetwork only needs to evolve a single parameter, the number of hidden neurons, and with the goal of space and time 
optimality, a set of AdNetworks are not required. Now, the evolution for AdNetwork will be determined by the number of 
redundant neurons described in section 4. 

Section 4 shows that a network reduction by distinctiveness also reduces the overall use of space and time. 
However, the previous experiments only focus on 50, 25 and 3 hidden neurons and while it showed evidence of 
improvements, it is difficult to deem it optimal. Therefore, AdNetwork should start with a sufficiently large number of 
hidden neurons which is then iteratively and dynamically reduced to optimality. To achieve a dynamically reduced 
AdNetwork, it updates its parameters with a certain interval and a removal rate. The interval was chosen to be 100 epochs 
to let AdNetwork learn before being reduced to output accurate angles between the hidden neurons and the survival rate 
was chosen to be 60% to emulate random survival of evolution. 
 Ten experiments were conducted with 50 initial hidden neurons and found that AdNetwork reduced its hidden 
layer to 4 neurons on average while keeping its accuracy and testing time. On the contrary, the training time was increased 
significantly to 131.67 seconds on average which is an acceptable time compared to finding optimality by brute force5. 
Fig. 11 shows a cross entropy loss of AdNetwork with evolution and its results. 
 

 

 

Fig. 11. Left shows a 50 hidden neuron evolving AdNetwork loss graph and right shows the average results over 10 trials. 

The above findings show that with each evolution, AdNetwork continues to feature a decrease in loss, meaning AdNetwork 
continues to learn. One interesting point to note is AdNetwork, on average, reduced to 4 hidden neurons instead of 3 
discovered in section 4 thus the original AdNetwork was further tested with 4 hidden neurons instead of 3. The results 
showed better testing accuracy than training accuracy. This incremental addition of a hidden neuron consistently improved 
the testing accuracy of AdNetwork over several experiments meaning the network also learned to classify Internet 
advertisements with abstract patterns rather than discrete patterns.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                        
5 Brute force may take any time between 2785 (training of 1 hidden neuron × 50) to 4075 (training of 50 hidden neuron × 50) seconds 

 Prediction: 
Not Ad 

Prediction: 
Ad 

Actual: 
Not Ad 

2241 9 

Actual: 
Ad 

48 321 

Accuracy 97.72% 

Training Time 131.67 seconds 

Testing Time 0.91 milliseconds 
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Fig. 12. Left shows training accuracy of 4 hidden neuron AdNetwork and right shows testing accuracy. 

 
AdNetwork can now be deemed space and time optimized based on distinctiveness and four hidden neurons can also be 
deemed optimal with the current parameters of AdNetwork. While AdNetwork with evolution shows further improvements 
from the original AdNetwork, the findings raise new questions regarding its accuracy. AdNetwork with 4 hidden neurons 
consistently showed better results in its testing accuracy than its training accuracy which may mean that AdNetwork with 
4 hidden neurons is correctly learning abstract patterns, but this should be further examined with larger testing set.  

6 Future work 

Unlike the original AdEater, AdNetwork takes a neural network approach to resolve two of the future work discussed in 
the original paper by Nicholas Kushmerick: 

• Some users might prefer one-sided errors (e.g., when in doubt, leave images intact). We know of no easy way to bias 
C4.5 rules in this manner but extending the learning algorithm to do so would be interesting [4]. 

• We already mentioned that our task is ideal for exploring “incremental” learning, in which a classifier is modified 
based on an update to the training instances, rather than being relearned from scratch. As described above, nearest-
neighbour and other lazy learning algorithms are incremental but are undesirable for other reasons. Incorporation an 
incremental decision tree or rule learning algorithm would improve overall efficiency [4]. 

The above two discussions are still valid on AdNetwork as it focuses on the shift in architecture with improvements on its 
time and space efficiency. However, as mentioned in Sec. 3, AdNetwork allows for much easier manipulation of bias and 
for continuous learning. 
AdEater was published in 1999 when websites mainly incorporated images for Internet advertisements. However, moving 
forward from AdEater introduces new types of advertisements such as videos, interactive media, malicious codes and 
pop-ups, to name a few [1]. The evolution in Internet advertisements call for a broader acceptance of HTML elements in 
the dataset to accommodate new formats of Internet advertisements (e.g., new Google advertisements are written in 
<div> blocks with titles which clearly indicate advertisements). Furthermore, third-party companies that specialize in 
Internet advertisements feature gigantic libraries of media which require hashed URLs that contain little to no information, 
rendering 𝑈)*( features useless. 

Fig. 13. Left shows a Google advertisement and right shows the 
corresponding HTML <div> tag with hashed image URL. 

 
 

 Prediction: 
Not Ad 

Prediction: 
Ad 

Actual: 
Not Ad 

2259 6 

Actual: 
Ad 

16 353 

Accuracy 98.14% 

Training Time 59.67 seconds 

Testing Time 0.69 milliseconds 

 Prediction: 
Not Ad 

Prediction: 
Ad 

Actual: 
Not Ad 

546 6 

Actual: 
Ad 

3 85 

Accuracy 98.59% 

Training Time 59.67 seconds 

Testing Time 0.69 milliseconds 
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7 Conclusion 

The shift of focus and the key findings from the original paper6 describing AdEater inspired a neural network based 
classifier named AdNetwork. The initial implementation of AdNetwork showed slight improvements on the accuracy of 
98.53% while the confusion matrix showed room for further improvements with its consequences, depending on the users’ 
need. In addition, the nature of neural networks enabled future works (described in Sec. 5) to be easily implemented. 
However, AdNetwork focused on space and time optimization by implementing a network reduction technique based on 
distinctiveness. Neural network reduction on the hidden layer allowed for 94% reduction of hidden neurons, 32% 
reduction of training time and 53% reduction of testing time while keeping the accuracy at ±1%. This neural network 
reduction technique was further examined by dynamically reducing AdNetwork’s hidden layer with non-traditional 
evolutionary methods. Evolving AdNetwork resulted a 4-neuron hidden layer that is both space and time optimal. 
AdNetwork with 4 hidden neurons consistently showed better testing accuracy with approximately 7% increase in training 
and testing time. AdNetwork also showed signs of learning abstract patterns rather than absolute patterns which may 
eliminate suspiciousness of overfitting. Finally, future works consist of: a) putting weight bias for advertisements (or non-
advertisements) to approach 100% accuracy on advertisement classification (or non-advertisement classification) and b) 
allowing broader acceptance of HTML tags within the dataset encoding to adapt for contemporary Internet 
advertisements. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                        
6 Learning to remove Internet advertisements by Nicholas Kushmerick 
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